Class IIa histone deacetylases: regulating the regulators

被引:200
作者
Martin, M. [1 ]
Kettmann, R. [1 ]
Dequiedt, F. [1 ]
机构
[1] FUSAGx, Cellular & Mol Biol Unit, B-5030 Gembloux, Belgium
关键词
14-3-3; acetylation; chromatin; phosphatase; shuttling;
D O I
10.1038/sj.onc.1210613
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases ( HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.
引用
收藏
页码:5450 / 5467
页数:18
相关论文
共 182 条
[141]   The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases [J].
Song, Kunhua ;
Backs, Johannes ;
McAnally, John ;
Qi, Xiaoxia ;
Gerard, Robert D. ;
Richardson, James A. ;
Hill, Joseph A. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
CELL, 2006, 125 (03) :453-466
[142]   MEF-2 function is modified by a novel co-repressor, MITR [J].
Sparrow, DB ;
Miska, EA ;
Langley, E ;
Reynaud-Deonauth, S ;
Kotecha, S ;
Towers, N ;
Spohr, G ;
Kouzarides, T ;
Mohun, TJ .
EMBO JOURNAL, 1999, 18 (18) :5085-5098
[143]   Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 [J].
Tatham, MH ;
Jaffray, E ;
Vaughan, OA ;
Desterro, JMP ;
Botting, CH ;
Naismith, JH ;
Hay, RT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35368-35374
[144]   A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p [J].
Taunton, J ;
Hassig, CA ;
Schreiber, SL .
SCIENCE, 1996, 272 (5260) :408-411
[145]   Histone deacetylases: Unique players in shaping the epigenetic histone code [J].
Thiagalingam, S ;
Cheng, KH ;
Lee, HJ ;
Mineva, N ;
Thiagalingam, A ;
Ponte, JF .
EPIGENETICS IN CANCER PREVENTION: EARLY DETECTION AND RISK ASSESSMENT, 2003, 983 :84-100
[146]   Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain [J].
Tong, JJ ;
Liu, JH ;
Bertos, NR ;
Yang, XJ .
NUCLEIC ACIDS RESEARCH, 2002, 30 (05) :1114-1123
[147]   14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation [J].
Tzivion, G ;
Avruch, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (05) :3061-3064
[148]   KIN-29SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class IIHDAC [J].
van der Linden, Alexander M. ;
Nolan, Katherine M. ;
Sengupta, Piali .
EMBO JOURNAL, 2007, 26 (02) :358-370
[149]   Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor [J].
Vannini, A ;
Volpari, C ;
Filocamo, G ;
Casavola, EC ;
Brunetti, M ;
Renzoni, D ;
Chakravarty, P ;
Paolini, C ;
De Francesco, R ;
Gallinari, P ;
Steinkühler, C ;
Di Marco, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15064-15069
[150]   Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis [J].
Vega, RB ;
Matsuda, K ;
Oh, J ;
Barbosa, AC ;
Yang, XL ;
Meadows, E ;
McAnally, J ;
Pomajzl, C ;
Shelton, JM ;
Richardson, JA ;
Karsenty, G ;
Olson, EN .
CELL, 2004, 119 (04) :555-566