Class IIa histone deacetylases: regulating the regulators

被引:200
作者
Martin, M. [1 ]
Kettmann, R. [1 ]
Dequiedt, F. [1 ]
机构
[1] FUSAGx, Cellular & Mol Biol Unit, B-5030 Gembloux, Belgium
关键词
14-3-3; acetylation; chromatin; phosphatase; shuttling;
D O I
10.1038/sj.onc.1210613
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases ( HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.
引用
收藏
页码:5450 / 5467
页数:18
相关论文
共 182 条
[1]   Recruitment of IκBα to the hes1 promoter is associated with transcriptional repression [J].
Aguilera, C ;
Hoya-Arias, R ;
Haegeman, G ;
Espinosa, L ;
Bigas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16537-16542
[2]   ACETYLATION + METHYLATION OF HISTONES + THEIR POSSIBLE ROLE IN REGULATION OF RNA SYNTHESIS [J].
ALLFREY, VG ;
FAULKNER, R ;
MIRSKY, AE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 51 (05) :786-+
[3]   MEF2C transcription factor controls chondrocyte hypertrophy and bone development [J].
Arnold, Michael A. ;
Kim, Yuri ;
Czubryt, Michael P. ;
Phan, Dillon ;
McAnally, John ;
Qi, Xiaoxia ;
Shelton, John M. ;
Richardson, James A. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
DEVELOPMENTAL CELL, 2007, 12 (03) :377-389
[4]   Control of cardiac growth by histone acetylation/deacetylation [J].
Backs, J ;
Olson, EN .
CIRCULATION RESEARCH, 2006, 98 (01) :15-24
[5]   CaM kinase II selectively signals to histone deacetylase 4 during cardiornyocyte hypertrophy [J].
Backs, Johannes ;
Song, Kunhua ;
Bezprozvannaya, Svetlana ;
Chang, Shurong ;
Olson, Eric N. .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (07) :1853-1864
[6]   Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis [J].
Bakin, RE ;
Jung, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :51218-51225
[7]   DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines [J].
Basile, V ;
Mantovani, R ;
Imbriano, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (04) :2347-2357
[8]   SIK1 is a class IIHDAC kinase that promotes survival of skeletal myocytes [J].
Berdeaux, Rebecca ;
Goebel, Naomi ;
Banaszynski, Laura ;
Takemori, Hiroshi ;
Wandless, Thomas ;
Shelton, G. Diane ;
Montminy, Marc .
NATURE MEDICINE, 2007, 13 (05) :597-603
[9]   Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2 [J].
Berger, I ;
Bieniossek, C ;
Schaffitzel, C ;
Hassler, M ;
Santelli, E ;
Richmond, TJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :17625-17635
[10]   Class II histone deacetylases: Structure, function, and regulation [J].
Bertos, NR ;
Wang, AH ;
Yang, XJ .
BIOCHEMISTRY AND CELL BIOLOGY, 2001, 79 (03) :243-252