Quantification of sorption, diffusion, and plasticization properties of cellulose triacetate films under mixed-gas CO2/CH4 environment

被引:35
|
作者
Genduso, Giuseppe [1 ]
Pinnau, Ingo [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Funct Polymer Membranes Grp, Adv Membranes & Porous Mat Ctr, Thuwal 239556900, Saudi Arabia
关键词
Cellulose acetate; Plasticization; Mixed-gas sorption; Mixed-gas diffusion; Mixed-gas permeation; INTRINSIC MICROPOROSITY; SOLUBILITY SELECTIVITY; PERMEATION PROPERTIES; COMPETITIVE SORPTION; N-C4H10; PERMEABILITY; INTRACHAIN RIGIDITY; POLYIMIDE MEMBRANES; CO2-CH4; MIXTURES; CARBON-DIOXIDE; PURE;
D O I
10.1016/j.memsci.2020.118269
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane technology is employed in large-scale removal of acid gases from natural gas, and cellulose acetate is by far the most adopted material for this application. Because of its utmost industrial relevance, we analyzed the gas sorption behavior of CO2-CH4 mixtures in cellulose triacetate (CTA) at 35 degrees C. CO2 solubility in CTA was only slightly affected by the presence of methane, whereas competition effects sharply reduced CH4 uptake. Regardless of mixture concentration, CO2 vs. CH4 solubility coefficients regressed linearly, which translated in solubility selectivities that increased as equilibrium pressures increased. Specifically, compared to other relevant glassy polymer membrane materials, CTA positioned very close to the solubility selectivity upper bound at infinite dilution and demonstrated the highest affinity to CO2 at all investigated pressures. The experimental solubility and permeability data were used in the framework of the solution-diffusion theory to determine pure -and mixed-gas concentration averaged diffusion coefficients of CTA. CO2 diffusion was essentially unaffected by mixture effects, whereas methane diffusivity was boosted by the CO2-induced plasticization of CTA. The ratio between the pure-and mixed-gas concentration averaged diffusion coefficients of methane was used to quantify the effect of plasticization on the mixed-gas performance of CTA and other relevant membrane materials pre-viously analyzed in similar experimental studies. When we further extended this comparison in a mixed-gas diffusion analysis (at 10 atm partial pressure), we observed that CTA had lower diffusion selectivity due to an inferior size-sieving capability than a reference material, 6FDA-mPDA polyimide, but displayed superior solu-bility selectivity.
引用
收藏
页数:8
相关论文
共 50 条
  • [32] Suppression of crystallization in thin films of cellulose diacetate and its effect on CO2/CH4 separation properties
    Hien Nguyen
    Wang, Mengyuan
    Hsiao, Ming-Yin
    Nagai, Kazukiyo
    Ding, Yifu
    Lin, Haiqing
    JOURNAL OF MEMBRANE SCIENCE, 2019, 586 : 7 - 14
  • [33] CH4 REFORMING WITH CO2 TO SYNTHESIS GAS
    TANG Song-Bai QIU Fa-Li LU Shao-Jie ZHAO Ming-Ying Chengdu Institute of Organic Chemistry
    Journal of Natural Gas Chemistry, 1993, (01) : 62 - 68
  • [34] Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode
    Hara, K
    Sakata, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (02) : 539 - 545
  • [35] Highly Selective Benzimidazole-Based Polyimide/Ionic Polyimide Membranes for Pure- and Mixed-Gas CO2/CH4 Separation
    Xie, Wei
    Jiao, Yang
    Cai, Zhili
    Liu, Hongyan
    Gong, Lili
    Lai, Wei
    Shan, Linglong
    Luo, Shuangjiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 282
  • [36] Study of CO2/CH4 exchange sorption in coal under confining pressure conditions
    Skoczylas, Norbert
    Kudasik, Mateusz
    Pajdak, Anna
    Braga, Leticia Teixeira Palla
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 124
  • [37] Studies on the competitive sorption of CO2 and CH4 on hard coal
    Pajdak, Anna
    Kudasik, Mateusz
    Skoczylas, Norbert
    Wierzbicki, Miroslaw
    Braga, Leticia Teixeira Palla
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 90
  • [38] The sorption and permeation of co2 and ch4 for dimethylated polysulfone membrane
    Hyun-Joon Kim
    Suk-In Hong
    Korean Journal of Chemical Engineering, 1997, 14 : 168 - 174
  • [39] Balance of CO2/CH4 exchange sorption in a coal briquette
    Dutka, Barbara
    Kudasik, Mateusz
    Pokryszka, Zbigniew
    Skoczylas, Norbert
    Topolnicki, Juliusz
    Wierzbicki, Miroslaw
    FUEL PROCESSING TECHNOLOGY, 2013, 106 : 95 - 101
  • [40] Simplified model of the CO2/CH4 exchange sorption process
    Topolnicki, Juliusz
    Kudasik, Mateusz
    Dutka, Barbara
    FUEL PROCESSING TECHNOLOGY, 2013, 113 : 67 - 74