Numerical treatment of second kind Fredholm integral equations systems on bounded intervals

被引:10
作者
De Bonis, M. C. [1 ]
Laurita, C. [1 ]
机构
[1] Univ Basilicata, Dept Math, I-85100 Potenza, Italy
关键词
Fredholm integral equations; projection method; Nystrom method; Lagrange interpolation; condition number;
D O I
10.1016/j.cam.2007.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the authors propose numerical methods to approximate the solutions of systems of second kind Fredholm integral equations. They prove that such methods are stable and convergent. Error estimates in weighted L-p norm, 1 <= p <= + infinity, are given and some numerical tests are shown. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 87
页数:24
相关论文
共 17 条
[1]   Chebyshev polynomial solutions of systems of linear integral equations [J].
Akyüz-Dascioglu, A .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (01) :221-232
[2]  
[Anonymous], 1994, THEORY APPROXIMATION
[3]  
Atkinsons K.E., 1997, CAMBRIDGE MONOGRAPHS
[4]   Projection methods and condition numbers in uniform norm for Fredholm and Cauchy singular integral equations [J].
De Bonis, M. C. ;
Mastroianni, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1351-1374
[5]  
Ditzian Z., 1987, Moduli of Smoothness
[6]  
LAURITA C, 2002, J INTEGRAL EQUAT, V14, P311, DOI DOI 10.1216/JIEA/1181074918
[7]   Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method [J].
Maleknejad, K ;
Aghazadeh, N ;
Rabbani, M .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1229-1234
[8]   Numerical solution of integral equations system of the second kind by Block-Pulse functions [J].
Maleknejad, K ;
Shahrezaee, M ;
Khatami, H .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (01) :15-24
[9]  
MASTROIANNI G, 1993, INT S NUM M, V112, P241
[10]  
Mastroianni G., 1995, Numerical Algorithms, V10, P113, DOI 10.1007/BF02198298