CONNECTING THE SUN AND THE SOLAR WIND: THE FIRST 2.5-DIMENSIONAL SELF-CONSISTENT MHD SIMULATION UNDER THE ALFVEN WAVE SCENARIO

被引:87
作者
Matsumoto, Takuma [1 ]
Suzuki, Takeru Ken [1 ]
机构
[1] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan
基金
日本学术振兴会;
关键词
stars: mass-loss; Sun: chromosphere; Sun: corona; Sun: photosphere; CORONAL HOLES; MAGNETOHYDRODYNAMIC TURBULENCE; WHITE-LIGHT; DRIVEN; MODEL; POWER; ACCELERATION; PROPAGATION; ATMOSPHERE; ANISOTROPY;
D O I
10.1088/0004-637X/749/1/8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5-dimensional simulations show that Alfven waves generated in the photosphere play an important role in coronal heating through the process of nonlinear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5-dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinates to treat the Alfven waves in the atmosphere with huge density contrast and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfven waves along an open magnetic flux tube, and these waves traveling upward in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfven mode to slow mode, and turbulent cascade. These processes lead to the dissipation of Alfven waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow-mode wave plays a fundamental role in the coronal heating process, whereas the turbulent cascade and shock heating drive the solar wind.
引用
收藏
页数:5
相关论文
共 41 条
[1]   THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING [J].
Antolin, P. ;
Shibata, K. .
ASTROPHYSICAL JOURNAL, 2010, 712 (01) :494-510
[2]  
Banerjee D, 1998, ASTRON ASTROPHYS, V339, P208
[3]   An anisotropic turbulent model for solar coronal heating [J].
Bigot, B. ;
Galtier, S. ;
Politano, H. .
ASTRONOMY & ASTROPHYSICS, 2008, 490 (01) :325-337
[4]   Waves in the magnetized solar atmosphere.: II.: Waves from localized sources in magnetic flux concentrations [J].
Bogdan, TJ ;
Hansteen, MCV ;
McMurry, A ;
Rosenthal, CS ;
Johnson, M ;
Petty-Powell, S ;
Zita, EJ ;
Stein, RF ;
McIntosh, SW ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2003, 599 (01) :626-660
[5]   Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications [J].
Cho, JY ;
Lazarian, A .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 345 (01) :325-339
[6]   Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence [J].
Cranmer, Steven R. ;
van Ballegooijen, Adriaan A. ;
Edgar, Richard J. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2007, 171 (02) :520-551
[7]   Chromospheric Alfvenic waves strong enough to power the solar wind [J].
De Pontieu, B. ;
McIntosh, S. W. ;
Carlsson, M. ;
Hansteen, V. H. ;
Tarbell, T. D. ;
Schrijver, C. J. ;
Title, A. M. ;
Shine, R. A. ;
Tsuneta, S. ;
Katsukawa, Y. ;
Ichimoto, K. ;
Suematsu, Y. ;
Shimizu, T. ;
Nagata, S. .
SCIENCE, 2007, 318 (5856) :1574-1577
[8]   Low-frequency waves and turbulence in an open magnetic region: Timescales and heating efficiency [J].
Dmitruk, P ;
Matthaeus, WH .
ASTROPHYSICAL JOURNAL, 2003, 597 (02) :1097-1105
[9]   Energy release in a turbulent corona [J].
Einaudi, G ;
Velli, M ;
Politano, H ;
Pouquet, A .
ASTROPHYSICAL JOURNAL, 1996, 457 (02) :L113-&
[10]   Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity [J].
Esser, R ;
Fineschi, S ;
Dobrzycka, D ;
Habbal, SR ;
Edgar, RJ ;
Raymond, JC ;
Kohl, JL ;
Guhathakurta, M .
ASTROPHYSICAL JOURNAL, 1999, 510 (01) :L63-L67