Improvements in a 20-kW Phase-Locked Magnetron by Anode Voltage Ripple Suppression

被引:16
作者
Chen, Xiaojie [1 ]
Yu, Ze [1 ]
Lin, Hang [1 ]
Zhao, Xiang [1 ]
Liu, Changjun [1 ]
机构
[1] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610064, Peoples R China
关键词
Anodes; Superconducting magnets; Magnetic noise; Magnetic shielding; Magnetic resonance; Magnetic analysis; Bandwidth; Anode voltage ripple; locking bandwidth; phase-locked magnetron; spurious suppression; MICROWAVE; FREQUENCY; GROWTH; NOISE;
D O I
10.1109/TPS.2019.2956868
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Microwave devices based on high-power magnetrons are currently used widely and there is a strong demand for phase-controlled magnetrons. In this work, the performance of a 20-kW $S$ -band continuous-wave magnetron with varied anode voltage ripple is studied. The anode voltage ripple is introduced to an equivalent model of the magnetron to evaluate the system& x2019;s performance theoretically. The effects of the anode voltage ripple and the injection parameters on the magnetron& x2019;s output are thus analyzed numerically. Furthermore, experiments are performed while the anode voltage ripple is varied from 4.2& x0025; to 0.6& x0025; using a shunt capacitance-adjustable ripple filter module. A nearly tripled locking bandwidth is observed under a constant injection ratio at 0.1 with decreasing ripple. The ripple-suppressed system pulls its sideband energy to the locking frequency and thus achieves a spectral intensity increment of 0.9 dB, phase noise reduction of 13 dB at an offset of 100 kHz, and phase jitter convergence from & x00B1;1.8& x00B0; to & x00B1;0.9& x00B0;. The experimental features validate the results obtained from the theoretical analyses. The results of this investigation also provide guidance for future industrial applications of phase-locked magnetron arrays.
引用
收藏
页码:1879 / 1885
页数:7
相关论文
共 19 条
[1]   High quality MPACVD diamond single crystal growth: high microwave power density regime [J].
Achard, J. ;
Silva, F. ;
Tallaire, A. ;
Bonnin, X. ;
Lombardi, G. ;
Hassouni, K. ;
Gicquel, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (20) :6175-6188
[3]   GROWTH AND FREQUENCY PUSHING EFFECTS IN RELATIVISTIC MAGNETRON PHASE-LOCKING [J].
CHEN, SC .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1990, 18 (03) :570-576
[4]   First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity [J].
Dexter, A. C. ;
Burt, G. ;
Carter, R. G. ;
Tahir, I. ;
Wang, H. ;
Davis, K. ;
Rimmer, R. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (03)
[5]  
Gilmour AS, 2011, ARTECH HSE MICROW LI, P347
[6]   Simulation and Experiments of an S-Band 20-kW Power-Adjustable Phase-Locked Magnetron [J].
Huang, Heping ;
Wei, Yu ;
Chen, Xiaojie ;
Huang, Kama ;
Liu, Changjun .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (05) :791-797
[7]   Experimental Study on Microwave Power Combining Based on Injection-Locked 15-kW S-Band Continuous-Wave Magnetrons [J].
Liu, Changjun ;
Huang, Heping ;
Liu, Zhengyu ;
Huo, Feixiang ;
Huang, Kama .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (08) :1291-1297
[8]   Experimental Studies on a Four-Way Microwave Power Combining System Based on Hybrid Injection-Locked 20-kW S-Band Magnetrons [J].
Liu, Zhenlong ;
Chen, Xiaojie ;
Yang, Menglin ;
Wu, Pengde ;
Huang, Kama ;
Liu, Changjun .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (01) :243-250
[9]  
Mitani T., 2004, 2004 Asia-Pacific Radio Science Conference Proceedings (IEEE Cat. No.04EX825), P603, DOI 10.1109/APRASC.2004.1422576
[10]   Noise-reduction effects of oven magnetron with cathode shield on high-voltage input side [J].
Mitani, Tomohiko ;
Shinohara, Naoki ;
Matsumoto, Hiroshi ;
Aiga, Masayuki ;
Kuwahara, Nagisa ;
Ishii, Takeshi .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) :1929-1936