CYLINDRICALLY BOUNDED CONSTANT MEAN CURVATURE SURFACES IN H2 x R

被引:6
|
作者
Mazet, Laurent [1 ]
机构
[1] Univ Paris Est, Lab Anal & Math Appl, UFR Sci & Technol, CNRS UMR8050, F-94010 Creteil, France
关键词
SPACE; DIRICHLET;
D O I
10.1090/tran/6171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is proved that a properly embedded constant mean curvature surface in H-2 x R which has finite topology and stays at a finite distance from a vertical geodesic line is invariant by rotation around a vertical geodesic line.
引用
收藏
页码:5329 / 5354
页数:26
相关论文
共 50 条
  • [21] CONSTANT MEAN CURVATURE ISOMETRIC IMMERSIONS INTO S2 x R AND H2 x R AND RELATED RESULTS
    Daniel, Benoit
    Domingos, Iury
    Vitorio, Feliciano
    ANNALES DE L INSTITUT FOURIER, 2023, 73 (01) : 203 - 249
  • [22] Constant mean curvature surfaces bounded by a circle
    López, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (03) : 971 - 978
  • [23] Graph Surfaces Invariant by Parabolic Screw Motions with Constant Curvature in H2 x R
    Dursun, Ugur
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 215 - 224
  • [24] Complete surfaces of constant curvature in H2 × R and S2 × R
    Juan A. Aledo
    José M. Espinar
    José A. Gálvez
    Calculus of Variations and Partial Differential Equations, 2007, 29 : 347 - 363
  • [25] Surfaces with constant curvature in S2 x R and H2 x R.: Height estimates and representation
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (04): : 533 - 554
  • [26] Some Surfaces with Zero Curvature in H2 x R
    Yoon, Dae Won
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [27] INFINITE BOUNDARY VALUE PROBLEMS FOR CONSTANT MEAN CURVATURE GRAPHS IN H2 x R AND S2 x R
    Hauswirth, Laurent
    Rosenberg, Harold
    Spruck, Joel
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (01) : 195 - 226
  • [28] The mean curvature of cylindrically bounded submanifolds
    Luis J. Alías
    G. Pacelli Bessa
    Marcos Dajczer
    Mathematische Annalen, 2009, 345
  • [29] The mean curvature of cylindrically bounded submanifolds
    Alias, Luis J.
    Bessa, G. Pacelli
    Dajczer, Marcos
    MATHEMATISCHE ANNALEN, 2009, 345 (02) : 367 - 376
  • [30] Surfaces of Constant Mean Curvature Bounded by Convex Curves
    Rafael Lopez
    Geometriae Dedicata, 1997, 66 : 255 - 263