CARLEMAN ESTIMATES FOR A MAGNETOHYDRODYNAMICS SYSTEM AND APPLICATION TO INVERSE SOURCE PROBLEMS

被引:0
作者
Huang, Xinchi [1 ]
Yamamoto, Masahiro [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Acad Romanian Scientists, Ilfov 3, Bucharest, Romania
[3] Acad Peloritana Pericolanti, Palazzo Univ,Piazza S Pugliatti 1, I-98122 Messina, Italy
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
viscous incompressible fluid; Carleman esti-mates; inverse source problems; stability; magnetohydrodynamics; EXACT INTERNAL CONTROLLABILITY; LIPSCHITZ STABILITY; EQUATIONS;
D O I
10.3934/mcrf.2022005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a linearized magnetohydrodynamics system for incompressible flow in a three-dimensional bounded domain. We first prove two kinds of Carleman estimates. This is done by combining the Carleman estimates for the parabolic and the elliptic equations. Then we apply the Carleman estimates to prove Ho center dot lder type stability results for some inverse source problems.
引用
收藏
页码:470 / 499
页数:30
相关论文
共 50 条
  • [31] A CARLEMAN ESTIMATE FOR THE LINEAR SHALLOW SHELL EQUATION AND AN INVERSE SOURCE PROBLEM
    Li, Shumin
    Miara, Bernadette
    Yamamoto, Masahiro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 367 - 380
  • [32] Carleman estimate and an inverse source problem for the Kelvin?Voigt model for viscoelasticity
    Imanuvilov, O. Yu
    Yamamoto, M.
    INVERSE PROBLEMS, 2019, 35 (12)
  • [33] SVD solutions to inverse source problems in the time domain: Application to complex point sources
    Hansen, Thorkild B.
    Marengo, Edwin A.
    WAVE MOTION, 2019, 89 : 93 - 103
  • [34] Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems
    Lu, Qi
    INVERSE PROBLEMS, 2012, 28 (04)
  • [35] Ionic parameters identification of an inverse problem of strongly coupled PDE's system in cardiac electrophysiology using Carleman estimates
    Abidi, Yassine
    Bellassoued, Mourad
    Mahjoub, Moncef
    Zemzemi, Nejib
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (02)
  • [36] INVERSE SOURCE PROBLEMS IN ELECTRODYNAMICS
    Hu, Guanghui
    Li, Peijun
    Liu, Xiaodong
    Zhao, Yue
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (06) : 1411 - 1428
  • [37] GLOBAL CARLEMAN ESTIMATE ON A NETWORK FOR THE WAVE EQUATION AND APPLICATION TO AN INVERSE PROBLEM
    Baudouin, Lucie
    Crepeau, Emmanuelle
    Valein, Julie
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (03) : 307 - 330
  • [38] Inverse problem for non-stationary system of magnetohydrodynamics
    Undasin U Abylkairov
    Serik E Aitzhanov
    Boundary Value Problems, 2015
  • [39] CARLEMAN ESTIMATES FOR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH APPLICATIONS TO THE STABLIZATION OF HYPERBOLIC SYSTEMS
    Eller, Matthias
    Toundykov, Daniel
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2012, 1 (02): : 271 - 296
  • [40] Inverse problem for non-stationary system of magnetohydrodynamics
    Abylkairov, Undasin U.
    Aitzhanov, Serik E.
    BOUNDARY VALUE PROBLEMS, 2015,