CARLEMAN ESTIMATES FOR A MAGNETOHYDRODYNAMICS SYSTEM AND APPLICATION TO INVERSE SOURCE PROBLEMS

被引:0
|
作者
Huang, Xinchi [1 ]
Yamamoto, Masahiro [1 ,2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Acad Romanian Scientists, Ilfov 3, Bucharest, Romania
[3] Acad Peloritana Pericolanti, Palazzo Univ,Piazza S Pugliatti 1, I-98122 Messina, Italy
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
viscous incompressible fluid; Carleman esti-mates; inverse source problems; stability; magnetohydrodynamics; EXACT INTERNAL CONTROLLABILITY; LIPSCHITZ STABILITY; EQUATIONS;
D O I
10.3934/mcrf.2022005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a linearized magnetohydrodynamics system for incompressible flow in a three-dimensional bounded domain. We first prove two kinds of Carleman estimates. This is done by combining the Carleman estimates for the parabolic and the elliptic equations. Then we apply the Carleman estimates to prove Ho center dot lder type stability results for some inverse source problems.
引用
收藏
页码:470 / 499
页数:30
相关论文
共 50 条
  • [1] Inverse coefficient problem for a magnetohydrodynamics system by Carleman estimates
    Huang, Xinchi
    APPLICABLE ANALYSIS, 2021, 100 (05) : 1010 - 1038
  • [2] Stability for inverse source problems by Carleman estimates
    Huang, X.
    Yu Imanuvilov, O.
    Yamamoto, M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [3] Carleman estimates and an inverse heat source problem for the thermoelasticity system
    Bellassoued, Mourad
    Yamamoto, Masahiro
    INVERSE PROBLEMS, 2011, 27 (01)
  • [4] Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates
    Li, Shumin
    Shang, Yunxia
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05): : 621 - 658
  • [5] Carleman estimate for Biot consolidation system in poro-elasticity and application to inverse problems
    Bellassoued, Mourad
    Riahi, Bochra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5281 - 5301
  • [6] SOLVING INVERSE SOURCE WAVE PROBLEM - FROM CARLEMAN ESTIMATES TO OBSERVER DESIGN
    Boulakia, Muriel
    DE Buhan, Maya
    Delaunay, Tiphaine
    Imperiale, Sebastien
    Moireau, Philippe
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2025,
  • [7] Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems
    Klibanov, Michael V.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (04): : 477 - 560
  • [8] A Carleman estimate for infinite cylindrical quantum domains and the application to inverse problems
    Kian, Yavar
    Phan, Quang Sang
    Soccorsi, Eric
    INVERSE PROBLEMS, 2014, 30 (05)
  • [9] Partial data inverse problems for Maxwell equations via Carleman estimates
    Chung, Francis J.
    Ola, Petri
    Salo, Mikko
    Tzou, Leo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 605 - 624
  • [10] Lipschitz stability in inverse source problems for degenerate/singular parabolic equations by the Carleman estimate
    Cung The Anh
    Vu Manh Toi
    Tran Quoc Tuan
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (03): : 313 - 325