Carleman estimates and null controllability of a class of singular parabolic equations

被引:8
|
作者
Du, Runmei [1 ,2 ]
Eichhorn, Jurgen [3 ]
Liu, Qiang [4 ]
Wang, Chunpeng [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Changchun Univ Technol, Sch Basic Sci, Changchun 130012, Jilin, Peoples R China
[3] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
[4] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Carleman estimate; null controllability; singular equation; APPROXIMATE CONTROLLABILITY; HEAT-EQUATION; DEGENERATE; OPERATORS; BOUNDARY; INEQUALITIES; SYSTEMS;
D O I
10.1515/anona-2016-0266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider control systems governed by a class of semilinear parabolic equations, which are singular at the boundary and possess singular convection and reaction terms. The systems are shown to be null controllable by establishing Carleman estimates, observability inequalities and energy estimates for solutions to linearized equations.
引用
收藏
页码:1057 / 1082
页数:26
相关论文
共 50 条
  • [31] CONTROLLABILITY RESULTS FOR A CLASS OF ONE DIMENSIONAL DEGENERATE/SINGULAR PARABOLIC EQUATIONS
    Fotouhi, Morteza
    Salimi, Leila
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (03) : 1415 - 1430
  • [32] Carleman Estimates and Controllability of Linear Stochastic Heat Equations
    Applied Mathematics & Optimization, 2003, 47 : 97 - 120
  • [33] Carleman estimates and controllability of linear stochastic heat equations
    Barbu, V
    Rascanu, A
    Tessitore, G
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02): : 97 - 120
  • [34] Holder gradient estimates for a class of singular or degenerate parabolic equations
    Imbert, Cyril
    Jin, Tianling
    Silvestre, Luis
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 845 - 867
  • [35] Backward estimates for nonnegative solutions to a class of singular parabolic equations
    Calahorrano Recalde, Marco Vinicio
    Vespri, Vincenzo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 194 - 203
  • [36] Null controllability and numerical simulations for a class of degenerate parabolic equations with nonlocal nonlinearities
    de Carvalho, P. P.
    Demarque, R.
    Limaco, J.
    Viana, L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (03):
  • [37] Null controllability and numerical simulations for a class of degenerate parabolic equations with nonlocal nonlinearities
    P. P. de Carvalho
    R. Demarque
    J. Límaco
    L. Viana
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [38] On the null controllability of parabolic equations with nonlinear memory
    Tao, Qiang
    Gao, Hang
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (07) : 1745 - 1753
  • [39] Null controllability of strongly degenerate parabolic equations
    Benoit, Antoine
    Loyer, Romain
    Rosier, Lionel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [40] NULL CONTROLLABILITY OF DEGENERATE NONAUTONOMOUS PARABOLIC EQUATIONS
    Benaissa, Abbes
    Mezadek, Abdelatif Kainane
    Maniar, Lahcen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (02): : 311 - 328