Carleman estimates and null controllability of a class of singular parabolic equations

被引:8
作者
Du, Runmei [1 ,2 ]
Eichhorn, Jurgen [3 ]
Liu, Qiang [4 ]
Wang, Chunpeng [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Changchun Univ Technol, Sch Basic Sci, Changchun 130012, Jilin, Peoples R China
[3] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
[4] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Carleman estimate; null controllability; singular equation; APPROXIMATE CONTROLLABILITY; HEAT-EQUATION; DEGENERATE; OPERATORS; BOUNDARY; INEQUALITIES; SYSTEMS;
D O I
10.1515/anona-2016-0266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider control systems governed by a class of semilinear parabolic equations, which are singular at the boundary and possess singular convection and reaction terms. The systems are shown to be null controllable by establishing Carleman estimates, observability inequalities and energy estimates for solutions to linearized equations.
引用
收藏
页码:1057 / 1082
页数:26
相关论文
共 50 条
  • [31] Carleman estimates for integro-differential parabolic equations with singular memory kernels
    Loreti P.
    Sforza D.
    Yamamoto M.
    Journal of Elliptic and Parabolic Equations, 2017, 3 (1-2) : 53 - 64
  • [32] Null controllability of strongly degenerate parabolic equations
    Benoit, Antoine
    Loyer, Romain
    Rosier, Lionel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [33] Sharp Carleman estimates for singular parabolic equations and application to Lipschitz stability in inverse source problems
    Vancostenoble, Judith
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 801 - 805
  • [34] NULL CONTROLLABILITY OF DEGENERATE NONAUTONOMOUS PARABOLIC EQUATIONS
    Benaissa, Abbes
    Mezadek, Abdelatif Kainane
    Maniar, Lahcen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (02): : 311 - 328
  • [35] On the Controllability of a Class of Degenerate Parabolic Equations with Memory
    Zhou, Xiuxiang
    Zhang, Muming
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (04) : 577 - 591
  • [36] Null controllability for a degenerate population model in divergence form via Carleman estimates
    Fragnelli, Genni
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1102 - 1129
  • [37] Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations
    Pedro González Casanova
    Víctor Hernández-Santamaría
    Advances in Computational Mathematics, 2021, 47
  • [38] Carleman estimates for a class of degenerate parabolic operators
    Cannarsa, P.
    Martinez, P.
    Vancostenoble, J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) : 1 - 19
  • [39] Carleman estimates and controllability results for fully discrete approximations of 1D parabolic equations
    Gonzalez Casanova, Pedro
    Hernandez-Santamaria, Victor
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (05)
  • [40] Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations
    Boyer, Franck
    Hubert, Florence
    Le Rousseau, Jerome
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (03): : 240 - 276