机构:
Boston Univ, Dept Math & Stat, Boston, MA 02215 USABoston Univ, Dept Math & Stat, Boston, MA 02215 USA
Kolaczyk, ED
[1
]
Nowak, RD
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Math & Stat, Boston, MA 02215 USABoston Univ, Dept Math & Stat, Boston, MA 02215 USA
Nowak, RD
[1
]
机构:
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
来源:
NONLINEAR ESTIMATION AND CLASSIFICATION
|
2003年
/
171卷
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We present an overview of recent efforts developing a framework for a new class of statistical models based on the concept of multiscale likelihood factorizations. This framework blends elements of wavelets, recursive partitioning, and graphical models to derive a probabilistic analogue of an orthogonal wavelet decomposition. The casting of these results within a likelihood-based context allows for the extension of certain key properties of classical wavelet based estimators to a setting that includes, within a single unified perspective, models for continuous, count, and categorical datatypes.