Multiscale statistical models

被引:0
作者
Kolaczyk, ED [1 ]
Nowak, RD [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
来源
NONLINEAR ESTIMATION AND CLASSIFICATION | 2003年 / 171卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an overview of recent efforts developing a framework for a new class of statistical models based on the concept of multiscale likelihood factorizations. This framework blends elements of wavelets, recursive partitioning, and graphical models to derive a probabilistic analogue of an orthogonal wavelet decomposition. The casting of these results within a likelihood-based context allows for the extension of certain key properties of classical wavelet based estimators to a setting that includes, within a single unified perspective, models for continuous, count, and categorical datatypes.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 18 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]  
[Anonymous], 1983, CLASSIFICATION REGRE
[3]  
Birge L., 1997, FESTSCHRIFT LUCIEN C
[4]   Adaptive Bayesian wavelet shrinkage [J].
Chipman, HA ;
Kolaczyk, ED ;
McCullogh, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) :1413-1421
[5]   Multiple shrinkage and subset selection in wavelets [J].
Clyde, M ;
Parmigiani, G ;
Vidakovic, B .
BIOMETRIKA, 1998, 85 (02) :391-401
[6]   Cart and best-ortho-basis: A connection [J].
Donoho, DL .
ANNALS OF STATISTICS, 1997, 25 (05) :1870-1911
[7]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[8]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[9]   Wavelet threshold estimators for data with correlated noise [J].
Johnstone, IM ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1997, 59 (02) :319-351
[10]  
Kolaczyk ED, 2001, GEOGR ANAL, V33, P95