On the asymptotic representation of the Euler gamma function by Ramanujan

被引:53
作者
Karatsuba, EA [1 ]
机构
[1] RAS, Ctr Comp, Moscow 117967, Russia
关键词
Euler gamma function; asymptotic representation; Stirling's formulas; uniform estimate of the remainder; monotonicity; Fourier series; Lagrange formula;
D O I
10.1016/S0377-0427(00)00586-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of approximation to the Euler gamma function on the basis of some Ramanujan's formulas is considered. The function h(x) = (g(x))(6) - (8x(3) + 4x(2) + x), where g(x) = (e/x)(x)Gamma (1 + x)/root pi, is, studied. It is proved that on the interval (1, infinity) the function h(x) is increasing monotonically from h(1) = 0.0111976... to h(infinity) = 1/30 = 0.0333... . (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 9 条
[1]  
[Anonymous], CAN MATH SOC SER MON
[2]  
Berndt B.C., 1999, J INDIAN MATH SOC, V236, P15
[3]  
Karatsuba A. A., 1992, RIEMANN ZETA FUNCTIO, DOI [10.1515/9783110886146, DOI 10.1515/9783110886146]
[4]   On the computation of the Euler constant γ [J].
Karatsuba, EA .
NUMERICAL ALGORITHMS, 2000, 24 (1-2) :83-97
[5]  
KARATSUBA EA, 1999, 226 U HELS
[6]  
KARATSUBA EA, 1999, 248 U HELS DEP MATH
[7]  
Ramanujan S, 1988, The Lost Notebook and Other Unpublished Papers
[8]  
WHITAKER ET, 1927, COURSE MODERN ANAL, V1
[9]  
[No title captured]