Algebrability of conditionally convergent series with Cauchy product

被引:13
作者
Bartoszewicz, Artur [1 ]
Glab, Szymon [1 ]
机构
[1] Tech Univ Lodz, Inst Math, PL-93005 Lodz, Poland
关键词
Algebrability; Cauchy product of series; EVERYWHERE SURJECTIVE FUNCTIONS; LINEABILITY; SET;
D O I
10.1016/j.jmaa.2011.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the set of conditionally convergent real series considered with Cauchy product is (omega, 1)-algebrable. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:693 / 697
页数:5
相关论文
共 9 条
[1]   Linear structure of sets of divergent sequences and series [J].
Aizpuru, A. ;
Perez-Eslava, C. ;
Seoane-Sepulveda, J. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :595-598
[2]   Algebrability of the set of everywhere surjective functions on C [J].
Aron, Richard M. ;
Seoane-Sepulveda, Juan B. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) :25-31
[3]   Algebrability of the set of non-convergent Fourier series [J].
Aron, Richard M. ;
Perez-Garcia, David ;
Seoane-Sepulveda, Juan B. .
STUDIA MATHEMATICA, 2006, 175 (01) :83-90
[4]   Uncountably Generated Algebras of Everywhere Surjective Functions [J].
Aron, Richard M. ;
Conejero, Jose A. ;
Peris, Alfredo ;
Seoane-Sepulveda, Juan B. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) :571-575
[5]  
BARTOSZEWICZ A, P AM MATH SOC UNPUB
[6]   On algebrability of nonabsolutely convergent series [J].
Bartoszewicz, Artur ;
Glab, Szymon ;
Poreda, Tadeusz .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) :1025-1028
[7]   LINEABILITY, SPACEABILITY, AND ALGEBRABILITY OF CERTAIN SUBSETS OF FUNCTION SPACES [J].
Garcia-Pacheco, F. J. ;
Martin, M. ;
Seoane-Sepulveda, J. B. .
TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (04) :1257-1269
[8]   Lineability and algebrability of pathological phenomena in analysis [J].
Garcia-Pacheco, F. J. ;
Palmberg, N. ;
Seoane-Sepulveda, J. B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :929-939
[9]  
Pringsheim A., 1883, MATH ANN, V21, P327, DOI [10.1007/BF01443879, DOI 10.1007/BF01443879]