The therapeutic arsenal for the control of helminth infections contains only a few chemical classes. The development and spread of resistance has eroded the utility of most currently available anthelmintics, at least for some indications, and is a constant threat to further reduce the options for treatment. Discovery and development of novel anthelmintic templates is strategically necessary to preserve the economic and health advantages now gained through chemotherapy. As the costs of development escalate, the question of how best to discover new drugs becomes paramount. Although random screening in infected animals led to the discovery of all currently available anthelmintics, cost constraints and a perception of diminishing returns require new approaches. Taking a cue from drug discovery programmes for human illnesses, we suggest that mechanism-based screening will provide the next generation of anthelmintic molecules. Critical to success in this venture will be the exploitation of the Caenorhabditis elegans genome through bioinformatics and genetic technologies. The greatest obstacle to success in this endeavour is the paucity of information available about the molecular physiology of helminths, making the choice of a discovery target a risky proposition. (C) 1998 Australian Society for Parasitology. Published by Elsevier Science Ltd. All rights reserved.