On the double Roman domination in graphs

被引:86
作者
Ahangar, Hossein Abdollahzadeh [1 ]
Chellali, Mustapha [2 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol Sar 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Roman domination; Double Roman domination; Roman {2}-domination; NUMBER;
D O I
10.1016/j.dam.2017.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A double Roman dominating function (DRDF) on a graph G = (V, E) is a functionf : V(G) -> (0, 1, 2, 3} having the property that if f(v) = 0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then vertex v must have at least one neighbor w with f(w) >= 2. The weight of a DRDF is the value f (V(G)) Sigma(u is an element of V(G))f(u). The double Roman domination number gamma(dR)(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with gamma(dR)(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small gamma(dR)(G) is provided. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 15 条
[1]   Mixed Roman Domination in Graphs [J].
Ahangar, H. Abdollahzadeh ;
Haynes, Teresa W. ;
Valenzuela-Tripodoro, J. C. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) :1443-1454
[2]  
Ahangar HA, 2017, UTILITAS MATHEMATICA, V103, P245
[3]  
Ahangar H. Abdollahzadeh, DOUBLE ROMAN TREES A
[4]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[5]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28
[6]   Upper bounds for f-domination number of graphs [J].
Chen, BF ;
Zhou, SM .
DISCRETE MATHEMATICS, 1998, 185 (1-3) :239-243
[7]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[8]  
Hansberg A., 2007, Discussiones Mathematicae Graph Theory, V27, P93, DOI 10.7151/dmgt.1347
[9]  
Hansberg A, 2008, UTILITAS MATHEMATICA, V77, P265
[10]   Defending the Roman Empire - A new strategy [J].
Henning, MA ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2003, 266 (1-3) :239-251