Minimising soil organic carbon erosion by wind is critical for land degradation neutrality

被引:105
作者
Chappell, Adrian [1 ]
Webb, Nicholas P. [2 ]
Leys, John F. [3 ]
Waters, Cathleen M. [4 ]
Orgill, Susan [5 ]
Eyres, Michael J. [6 ]
机构
[1] Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AT, S Glam, Wales
[2] ARS, USDA, Jornada Expt Range, Las Cruces, NM USA
[3] NSW Environm & Heritage, Knowledge Serv Team, Sci Div, Gunnedah, NSW 2380, Australia
[4] NSW Dept Primary Ind, PMB 19, Trangie, NSW 2823, Australia
[5] NSW Dept Primary Ind, Pine Gully Rd, Wagga Wagga, NSW 2650, Australia
[6] Field Syst Australia, Stirling, SA 5152, Australia
关键词
Land degradation neutrality; Soil organic carbon; Land cover; Wind erosion; Sequestration; SEQUESTRATION; DYNAMICS; REDISTRIBUTION; AGRICULTURE; VARIABILITY; MANAGEMENT; MAGNITUDE; EMISSION; SEDIMENT; CROPLAND;
D O I
10.1016/j.envsci.2018.12.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Land Degradation-Neutrality (LDN) framework of the United Nations Convention to Combat Desertification (UNCCD) is underpinned by three complementary interactive indicators (metrics: vegetation cover, net primary productivity; NPP and soil organic carbon; SOC) as proxies for change in land-based natural capital. The LDN framework assumes that SOC changes slowly, primarily by decomposition and respiration of CO2 to the atmosphere. However, there is growing evidence that soil erosion by wind, water and tillage also reduces SOC stocks rapidly after land use and cover change. Here, we modify a physically-based wind erosion sediment transport model to better represent the vegetation cover (using land surface aerodynamic roughness; that is the plant canopy coverage, stone cover, soil aggregates, etc. that protects the soil surface from wind erosion) and quantify the contribution of wind erosion to global SOC erosion (2001-2016). We use the wind erosion model to identify global dryland regions where SOC erosion by wind may be a significant problem for achieving LDN. Selected sites in global drylands also show SOC erosion by wind accelerating over time. Without targeting and reducing SOC erosion, management practices in these regions will fail to sequester SOC and reduce land degradation. We describe the interrelated nature of the LDN indicators, the importance of including SOC erosion by wind erosion and how by explicitly accounting for wind erosion processes, we can better represent the physical effects of changing land cover on land degradation. Our results for Earth's drylands show that modelling SOC stock reduction by wind erosion is better than using land cover and SOC independently. Furthermore, emphasising the role of wind erosion in UNCCD and Intergovernmental Panel on Climate Change (IPCC) reporting will better support LDN and climate change mitigation and adaptation globally.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 62 条
[51]   SPATIAL VARIABILITY OF CS-137 AND THE INFLUENCE OF SAMPLING ON ESTIMATES OF SEDIMENT REDISTRIBUTION [J].
SUTHERLAND, RA .
CATENA, 1994, 21 (01) :57-71
[52]   Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations [J].
Todd-Brown, K. E. O. ;
Randerson, J. T. ;
Post, W. M. ;
Hoffman, F. M. ;
Tarnocai, C. ;
Schuur, E. A. G. ;
Allison, S. D. .
BIOGEOSCIENCES, 2013, 10 (03) :1717-1736
[53]  
UN-Habitat-GLTN, 2016, 52016 UN HUM SETTL P
[54]   The impact of agricultural soil erosion on the global carbon cycle [J].
Van Oost, K. ;
Quine, T. A. ;
Govers, G. ;
De Gryze, S. ;
Six, J. ;
Harden, J. W. ;
Ritchie, J. C. ;
McCarty, G. W. ;
Heckrath, G. ;
Kosmas, C. ;
Giraldez, J. V. ;
da Silva, J. R. Marques ;
Merckx, R. .
SCIENCE, 2007, 318 (5850) :626-629
[55]   The reduction of partitioned wind and water erosion by conservation agriculture [J].
Van Pelt, R. Scott ;
Hushmurodov, Shaymonkul X. ;
Baumhardt, R. Louis ;
Chappell, Adrian ;
Nearing, Mark A. ;
Polyakov, Viktor O. ;
Strack, John E. .
CATENA, 2017, 148 :160-167
[56]   Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind I: Historic use of 137Cs [J].
Van Pelt, R. Scott .
AEOLIAN RESEARCH, 2013, 9 :89-102
[57]   AUSLEM (AUStralian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia [J].
Webb, Nicholas P. ;
McGowan, Hamish A. ;
Phinn, Stuart R. ;
McTainsh, Grant H. .
GEOMORPHOLOGY, 2006, 78 (3-4) :179-200
[58]   Land degradation and climate change: building climate resilience in agriculture [J].
Webb, Nicholas P. ;
Marshall, Nadine A. ;
Stringer, Lindsay C. ;
Reed, Mark S. ;
Chappell, Adrian ;
Herrick, Jeffrey E. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2017, 15 (08) :450-459
[59]   The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management [J].
Webb, Nicholas P. ;
Herrick, Jeffrey E. ;
Van Zee, Justin W. ;
Courtright, Ericha M. ;
Hugenholtz, Christopher H. ;
Zobeck, Ted M. ;
Okin, Gregory S. ;
Barchyn, Thomas E. ;
Billings, Benjamin J. ;
Boyd, Robert ;
Clingan, Scott D. ;
Cooper, Brad F. ;
Duniway, Michael C. ;
Derner, Justin D. ;
Fox, Fred A. ;
Haystad, Kris M. ;
Heilman, Philip ;
LaPlante, Valerie ;
Ludwig, Noel A. ;
Metz, Loretta J. ;
Nearing, Mark A. ;
Norfleet, M. Lee ;
Pierson, Frederick B. ;
Sanderson, Matt A. ;
Sharratt, Brenton S. ;
Steiner, Jean L. ;
Tatarko, John ;
Tedela, Negussie H. ;
Toledo, David ;
Unnasch, Robert S. ;
Van Pelt, R. Scott ;
Wagner, Larry .
AEOLIAN RESEARCH, 2016, 22 :23-36
[60]   Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle [J].
Webb, Nicholas P. ;
Strong, Craig L. ;
Chappell, Adrian ;
Marx, Samuel K. ;
McTainsh, Grant H. .
EARTH SURFACE PROCESSES AND LANDFORMS, 2013, 38 (14) :1662-1671