Enhanced initial permeability and dielectric constant in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-Polymer composite
被引:62
作者:
Shen, Y
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R China
Shen, Y
[1
]
Yue, ZX
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R China
Yue, ZX
[1
]
Li, M
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R China
Li, M
[1
]
Nan, CW
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R China
Nan, CW
[1
]
机构:
[1] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 10084, Peoples R China
A novel, three-phase, double-percolating composite with NiZn-ferrite particles and nickel particles embedded in a poly(vinylidene fluoride) matrix is prepared by a simple hot-pressing method. Large ferrite particles in the composite not only act as a magnetic phase, thus endowing the composite with a high initial permeability, but also present (in a high volume fraction) a discrete (non-percolating) phase, confining polymer and metallic particles into a continuous double-percolating structure of low volume fraction. In particular, a large enhancement in both the initial permeability and the dielectric constant of the three-phase composites is observed, which is due mainly to the addition of a small number of nickel particles that act as both magnetic and percolative metallic phases. The dielectric and magnetic behavior observed in the three-phase composites can be explained by effective-medium and percolation theories.
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
Shen, Y
Nan, CW
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
Nan, CW
Li, M
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
Shen, Y
Nan, CW
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
Nan, CW
Li, M
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China