A new cosmological mass limit on thermal relic axions

被引:86
|
作者
Hannestad, S [1 ]
Mirizzi, A
Raffelt, G
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark
[2] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Sez INFN Bari, I-70126 Bari, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2005年 / 07期
关键词
dark matter; axions;
D O I
10.1088/1475-7516/2005/07/002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations of the cosmological large-scale structure provide well-established neutrino mass limits. We extend this argument to thermal relic axions. We calculate the axion thermal freeze-out temperature and thus their cosmological abundance on the basis of their interaction with pions. For hadronic axions we find a new mass limit m(a) < 1.05 eV (95% CL), corresponding to a limit on the axion decay constant of f(a) > 5.7 x 10(6) GeV. For other models this constraint is significantly weakened only if the axion - pion coupling is strongly suppressed. For comparison we note that the same approach leads to Sigma m(nu) < 0.65 eV ( 95% CL) for neutrinos.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 50 条
  • [21] Newtonian limit of Einstein equation with a cosmological constant
    Li, Li-Fang
    Cao, Zhoujian
    He, Xiaokai
    CHINESE PHYSICS C, 2024, 48 (10)
  • [22] New results in searching for axions by astronomical methods
    Gnedin, Yu. N.
    Piotrovich, M. Yu.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (2-3):
  • [23] Thermal relic abundance and anisotropy due to modified gravity
    H. Hossienkhani
    A. Pasqua
    Astrophysics and Space Science, 2014, 349 : 39 - 47
  • [24] Thermal relic abundance and anisotropy due to modified gravity
    Hossienkhani, H.
    Pasqua, A.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (01) : 39 - 47
  • [25] New limit on axion-electron coupling obtained from searching for resonant absorption of solar axions by 83Kr nuclei
    Derbin, A. V.
    Drachnev, I. S.
    Gangapshev, A. M.
    Gavrilyuk, Yu. M.
    Kazalov, V. V.
    Kuzminov, V. V.
    Mikulich, M. S.
    Muratova, V. N.
    Tekueva, D. A.
    Unzhakov, E. V.
    Yakimenko, S. P.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (01): : 282 - 286
  • [26] Real scalar field, the nonrelativistic limit, and the cosmological expansion
    Heyen, Lars H.
    Floerchinger, Stefan
    PHYSICAL REVIEW D, 2020, 102 (03):
  • [27] Cosmological and astrophysical neutrino mass measurements
    Abazajian, K. N.
    Calabrese, E.
    Cooray, A.
    De Bernardis, F.
    Dodelson, S.
    Friedland, A.
    Fuller, G. M.
    Hannestad, S.
    Keating, B. G.
    Linder, E. V.
    Lunardini, C.
    Melchiorri, A.
    Miquel, R.
    Pierpaoli, E.
    Pritchard, J.
    Serra, P.
    Takada, M.
    Wong, Y. Y. Y.
    ASTROPARTICLE PHYSICS, 2011, 35 (04) : 177 - 184
  • [28] Generating cosmological perturbations with mass variations
    Vernizzi, F
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 148 : 120 - 127
  • [29] Thermal relic abundances of particles with velocity-dependent interactions
    Dent, James B.
    Dutta, Sourish
    Scherrer, Robert J.
    PHYSICS LETTERS B, 2010, 687 (4-5) : 275 - 279
  • [30] GALAXY CLUSTER RADIO RELICS IN ADAPTIVE MESH REFINEMENT COSMOLOGICAL SIMULATIONS: RELIC PROPERTIES AND SCALING RELATIONSHIPS
    Skillman, Samuel W.
    Hallman, Eric J.
    O'Shea, Brian W.
    Burns, Jack O.
    Smith, Britton D.
    Turk, Matthew J.
    ASTROPHYSICAL JOURNAL, 2011, 735 (02)