High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses

被引:29
作者
Dunn, Aniela [1 ]
Poyser, Caroline [2 ]
Dean, Paul [1 ]
Demic, Aleksandar [1 ]
Valavanis, Alexander [1 ]
Indjin, Dragan [1 ]
Salih, Mohammed [1 ]
Kundu, Iman [1 ]
Li, Lianhe [1 ]
Akimov, Andrey [2 ]
Davies, Alexander Giles [1 ]
Linfield, Edmund [1 ]
Cunningham, John [1 ]
Kent, Anthony [2 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
FREQUENCY-MODULATION; LOCKING; SYSTEM; MODEL;
D O I
10.1038/s41467-020-14662-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for high-frequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited to similar to 800ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures [J].
Akimov, A. V. ;
Scherbakov, A. V. ;
Yakovlev, D. R. ;
Foxon, C. T. ;
Bayer, M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (03)
[2]  
[Anonymous], 1998, Four-Volume Set
[3]   Observation of terahertz radiation coherently generated by acoustic waves [J].
Armstrong, Michael R. ;
Reed, Evan J. ;
Kim, Ki-Yong ;
Glownia, James H. ;
Howard, William M. ;
Piner, Edwin L. ;
Roberts, John C. .
NATURE PHYSICS, 2009, 5 (04) :285-288
[4]  
Barbieri S, 2011, NAT PHOTONICS, V5, P378
[5]  
Barbieri S, 2010, NAT PHOTONICS, V4, P636, DOI [10.1038/nphoton.2010.125, 10.1038/NPHOTON.2010.125]
[6]   13 GHz direct modulation of terahertz quantum cascade lasers [J].
Barbieri, Stefano ;
Maineult, Wilfried ;
Dhillon, Sukhdeep S. ;
Sirtori, Carlo ;
Alton, Jesse ;
Breuil, Nicolas ;
Beere, Harvey E. ;
Ritchie, David A. .
APPLIED PHYSICS LETTERS, 2007, 91 (14)
[7]   Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy [J].
Bartalini, S. ;
Consolino, L. ;
Cancio, P. ;
De Natale, P. ;
Bartolini, P. ;
Taschin, A. ;
De Pas, M. ;
Beere, H. ;
Ritchie, D. ;
Vitiello, M. S. ;
Torre, R. .
PHYSICAL REVIEW X, 2014, 4 (02)
[8]   Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy [J].
Bruchhausen, Axel ;
Lloyd-Hughes, James ;
Hettich, Mike ;
Gebs, Raphael ;
Grossmann, Martin ;
Ristow, Oliver ;
Bartels, Albrecht ;
Fischer, Milan ;
Beck, Mattias ;
Scalari, Giacomo ;
Faist, Jerome ;
Rudra, Alok ;
Gallo, Pascal ;
Kapon, Eli ;
Dekorsy, Thomas .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (03)
[9]  
Brüggemann C, 2012, NAT PHOTONICS, V6, P30, DOI [10.1038/nphoton.2011.269, 10.1038/NPHOTON.2011.269]
[10]   Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers [J].
Consolino, L. ;
Taschin, A. ;
Bartolini, P. ;
Bartalini, S. ;
Cancio, P. ;
Tredicucci, A. ;
Beere, H. E. ;
Ritchie, D. A. ;
Torre, R. ;
Vitiello, M. S. ;
De Natale, P. .
NATURE COMMUNICATIONS, 2012, 3