Downregulation of exosomal MHC-I promotes glioma cells escaping from systemic immunosurveillance

被引:14
作者
Sun, Ting [1 ,4 ]
Li, Yanyan [1 ]
Wu, Jie [1 ]
Cao, Yufei [1 ]
Yang, Ying [2 ,3 ]
He, Yuping [2 ,3 ]
Huang, Wenpeng [2 ,3 ]
Liu, Bin [1 ]
Yang, Wei [2 ,3 ,5 ]
机构
[1] Soochow Univ, Affiliated Hosp 1, Neurosurg & Brain & Nerve Res Lab, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Jiangsu Higher Educ Inst, Sch Radiat Med & Protect, State Key Lab Radiat Med & Protect, Suzhou, Jiangsu, Peoples R China
[3] Soochow Univ, Collaborat Innovat Ctr Radiat Med Jiangsu Higher E, Suzhou, Jiangsu, Peoples R China
[4] Soochow Univ, Affiliated Hosp 1, Neurosurg & Brain & Nerve Res Lab, Donghuan Rd 178, Suzhou 215006, Jiangsu, Peoples R China
[5] Soochow Univ, Sch Radiat Med & Protect, Renai Rd 199, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MHC-I; Exosomes; Systemic immunosurveillance; Antigen presentation; T cell activation; TUMOR; CANCER; EXPRESSION; ANTIGENS; MACHINERY; RELEASE;
D O I
10.1016/j.nano.2022.102605
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tumor-derived exosomes are capable of inducing immune dysfunction and favoring the formation and progression of tumor. The major histocompatibility complex class I (MHC-I) plays a key role in antitumor immune responses by presenting tumor antigens to cytotoxic T lymphocytes. However, the role of tumor-derived circulating exosomal MHC-I on immune system activation remains unclear. We demon-strated that low level of glioma cells-derived exosomal MHC-I was associated with the dysfunction of CD8(+) T cells in immune activation and cytotoxicity. MHC-I upregulation in exosomes restored antigen presentation of glioma cells and activated CD8(+) T cells to exert robust antitumor immune response in combination with immune checkpoint blockade. Collectively, these data provided evidences for an important interplay between exosomal MHC-I and CD8(+) T cells to activate systemic antitumor immune response, and interpreted how glioma cells evaded immunosurveillance, induced immunosuppression and were resistant to immunotherapy from the perspective of systemic immunity. (C) 2022 Published by Elsevier Inc.
引用
收藏
页数:14
相关论文
共 50 条
[31]   SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression [J].
Alam, Aftab ;
Taye, Nandaraj ;
Patel, Sonal ;
Thube, Milind ;
Mullick, Jayati ;
Shah, Vibhuti Kumar ;
Pant, Richa ;
Roychowdhurey, Tanaya ;
Banerjee, Nilanjan ;
Chatterjee, Subhranosu ;
Bhattachatya, Rittwika ;
Roy, Rini ;
Mukhopadhyay, Ashis ;
Mogare, Devraj ;
Chattopadhyay, Samit .
NEOPLASIA, 2019, 21 (10) :945-962
[32]   Exosomal lncRNA ROR1-AS1 Derived from Tumor Cells Promotes Glioma Progression via Regulating miR-4686 [J].
Chai, Yang ;
Wu, Hai-Tao ;
Liang, Chuan-Dong ;
You, Chun-Yue ;
Xie, Ming-Xiang ;
Xiao, Shun-Wu .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 :8863-8872
[33]   A human adenovirus encoding IFN-γ can transduce Tasmanian devil facial tumour cells and upregulate MHC-I [J].
Kayigwe, Ahab N. ;
Darby, Jocelyn M. ;
Lyons, A. Bruce ;
Patchett, Amanda L. ;
Lisowski, Leszek ;
Liu, Guei-Sheung ;
Flies, Andrew S. .
JOURNAL OF GENERAL VIROLOGY, 2022, 103 (11)
[34]   OASL promotes immune evasion in pancreatic ductal adenocarcinoma by enhancing autolysosome-mediated degradation of MHC-I [J].
Xing, Xin ;
Li, Xia-Qing ;
Yin, Shi-Qi ;
Ma, Hong-Tai ;
Xiao, Shu-Yu ;
Tulamaiti, Aziguli ;
Yang, Yan ;
Jiang, Shu-Heng ;
Hu, Li-Peng ;
Zhang, Zhi-Gang ;
Huo, Yan-Miao ;
Li, Dong-Xue ;
Yang, Xiao-Mei ;
Zhang, Xue-Li .
THERANOSTICS, 2025, 15 (06) :2104-2120
[35]   Upregulation of MHC-I and downregulation of PD-L1 expression by doxorubicin and deferasirox codelivered liposomal nanoparticles for chemoimmunotherapy of melanoma [J].
Song, Panpan ;
Han, Xiaoqing ;
Zheng, Runxiao ;
Yan, Jiao ;
Wu, Xiaqing ;
Wang, Yanjing ;
Zhang, Haiyuan .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 624
[36]   Identification and Mitigation of Defensins in the Immunopurification of Peptide MHC-I Antigens from Lung Tissue [J].
Chow, David T. ;
Rardin, Matthew J. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2022, 33 (09) :1590-1597
[37]   Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy [J].
Ye, Di ;
Zhou, Shuang ;
Dai, Xinyu ;
Xu, Huanji ;
Tang, Qiulin ;
Huang, Huixi ;
Bi, Feng .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2024, 1879 (05)
[38]   Inhibitory Effects of Leishmania Mexicana infection on MHC-I Expression in Bone Marrow Derived Dendritic Cells [J].
Rezvan, Hossein ;
Ali, Selman A. ;
Navard, Sahar Hamoon .
IRANIAN JOURNAL OF PARASITOLOGY, 2022, 17 (04) :562-572
[39]   TIMP-1 is an activator of MHC-I expression in myeloid dendritic cells with implications for tumor immunogenicity [J].
Langguth, Miriam ;
Maranou, Eleftheria ;
Koskela, Saara A. ;
Elenius, Oskar ;
Kallionpaa, Roosa E. ;
Birkman, Eva-Maria ;
Pulkkinen, Otto I. ;
Sundvall, Maria ;
Salmi, Marko ;
Figueiredo, Carlos R. .
GENES AND IMMUNITY, 2024, 25 (03) :188-200
[40]   MHC-I presentation of peptides derived from intact protein products of the pioneer round of translation [J].
Weinstein-Marom, Hadas ;
Hendel, Liron ;
Laron, Efrat Avigad ;
Sharabi-Nov, Adi ;
Margalit, Alon ;
Gross, Gideon .
FASEB JOURNAL, 2019, 33 (10) :11458-11468