Integrability analysis of the Emden-Fowler equation

被引:29
作者
Govinder, K. S. [1 ]
Leach, P. G. L. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa
[2] Univ Aegean, Sch Sci, Res Grp Math Phys, Dept Informat & Commun Syst Engn, Karlovassi 83200, Greece
基金
新加坡国家研究基金会;
关键词
D O I
10.2991/jnmp.2007.14.3.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Emden-Fowler equation of index n is studied utilising the techniques of Lie and Painleve analysis. For general n information about the integrability of this equation is obtained. The link between these two types of analyses is explored. The special cases of n = -3, 2 are also examined. As a result of the Painleve analysis new second-order equations possessing the Painleve property are found.
引用
收藏
页码:435 / 453
页数:19
相关论文
共 61 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]   HIDDEN SYMMETRIES ASSOCIATED WITH THE PROJECTIVE GROUP OF NONLINEAR 1ST-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
ABRAHAMSHRAUNER, B ;
GUO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5597-5608
[3]  
ABRAHAMSHRAUNER B, 1993, LECT NOTES APPL MATH, V29, P1
[4]  
ABRAHAMSHRAUNER B, 1991, COMMUNICATION JAN
[5]   Autonomous self-similar ordinary differential equations and the Painleve connection [J].
Andriopoulos, K. ;
Leach, P. G. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :625-639
[6]   Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III [J].
Andriopoulos, K. ;
Leach, P. G. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :860-875
[7]  
[Anonymous], 1889, ACTA MATH-DJURSHOLM, DOI [10.1007/BF02413316, DOI 10.1007/BF02413316]
[8]  
[Anonymous], 1997, J NONLINEAR MATH PHY, DOI DOI 10.2991/JNMP.1997.4.3-4.7
[9]  
[Anonymous], 1900, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02419020
[10]  
BERKOVICH LM, 1992, SOV MATH DOKL, V45, P146