Graphene-collagen cryogel controls neuroinflammation and fosters accelerated axonal regeneration in spinal cord injury

被引:26
作者
Agarwal, Gopal [1 ]
Roy, Abhishek [2 ]
Kumar, Hemant [2 ]
Srivastava, Akshay [3 ]
机构
[1] Natl Inst Pharmaceut Educ & Res, Dept Biotechnol, Ahmadabad, Gandhinagar, India
[2] Natl Inst Pharmaceut Educ & Res, Dept Pharmacol & Toxicol, Ahmadabad, Gandhinagar, India
[3] Natl Inst Pharmaceut Educ & Res, Dept Med Device, Ahmadabad, Gandhinagar, India
来源
BIOMATERIALS ADVANCES | 2022年 / 139卷
关键词
Graphene; Collagen; Spinal cord injury; Functional recovery; Microglia; Axonal regeneration; CONDUCTIVE HYDROGELS; PRISTINE GRAPHENE; PERIPHERAL-NERVE; OXIDE SCAFFOLDS; TISSUE; BIOMATERIALS; POLARIZATION; IMPLANTATION; ASTROGLIOSIS; MACROPHAGES;
D O I
10.1016/j.bioadv.2022.212971
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like beta-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.
引用
收藏
页数:17
相关论文
共 95 条
[1]  
Agarwal G., 2021, XRAY TOMOGRAPHY ANAL
[2]   Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration [J].
Agarwal, Gopal ;
Kumar, Navin ;
Srivastava, Akshay .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
[3]   Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury [J].
Akhmetzyanova, Elvira ;
Kletenkov, Konstantin ;
Mukhamedshina, Yana ;
Rizvanov, Albert .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2019, 13
[4]   Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury [J].
Albashari, Abdullkhaleg ;
He, Yan ;
Zhang, Yanni ;
Ali, Jihea ;
Lin, Feiou ;
Zheng, Zengming ;
Zhang, Keke ;
Cao, Yanfan ;
Xu, Chun ;
Luo, Lihua ;
Wang, Jianming ;
Ye, Qingsong .
ACS OMEGA, 2020, 5 (26) :16064-16075
[5]   Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord [J].
Altinova, Haktan ;
Moellers, Sven ;
Fuehrmann, Tobias ;
Deumens, Ronald ;
Bozkurt, Ahmet ;
Heschel, Ingo ;
Damink, Leon H. H. Olde ;
Schuegner, Frank ;
Weis, Joachim ;
Brook, Gary A. .
BRAIN RESEARCH, 2014, 1585 :37-50
[6]   Required growth facilitators propel axon regeneration across complete spinal cord injury [J].
Anderson, Mark A. ;
O'Shea, Timothy M. ;
Burda, Joshua E. ;
Ao, Yan ;
Barlatey, Sabry L. ;
Bernstein, Alexander M. ;
Kim, Jae H. ;
James, Nicholas D. ;
Rogers, Alexandra ;
Kato, Brian ;
Wollenberg, Alexander L. ;
Kawaguchi, Riki ;
Coppola, Giovanni ;
Wang, Chen ;
Deming, Timothy J. ;
He, Zhigang ;
Courtine, Gregoire ;
Sofroniew, Michael V. .
NATURE, 2018, 561 (7723) :396-+
[7]   Tissue engineered hydrogels supporting 3D neural networks [J].
Aregueta-Robles, Ulises A. ;
Martens, Penny J. ;
Poole-Warren, Laura A. ;
Green, Rylie A. .
ACTA BIOMATERIALIA, 2019, 95 :269-284
[8]  
Ashammakhi N, 2019, TISSUE ENG PART B-RE, V25, P471, DOI [10.1089/ten.teb.2019.0182, 10.1089/ten.TEB.2019.0182]
[9]   A SENSITIVE AND RELIABLE LOCOMOTOR RATING-SCALE FOR OPEN-FIELD TESTING IN RATS [J].
BASSO, DM ;
BEATTIE, MS ;
BRESNAHAN, JC .
JOURNAL OF NEUROTRAUMA, 1995, 12 (01) :1-21
[10]   Current and novel polymeric biomaterials for neural tissue engineering [J].
Boni, Rossana ;
Ali, Azam ;
Shavandi, Amin ;
Clarkson, Andrew N. .
JOURNAL OF BIOMEDICAL SCIENCE, 2018, 25