MULTIPLICITY RESULTS ON PERIODIC SOLUTIONS TO HIGHER-DIMENSIONAL DIFFERENTIAL EQUATIONS WITH MULTIPLE DELAYS

被引:9
作者
Zheng, Bo [1 ]
Guo, Zhiming [2 ]
机构
[1] Guangzhou Univ, Coll Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic solutions; higher-dimensional differential equations; multiple delays; the S-1-index theory; Galerkin approximation method; LINEAR HAMILTONIAN-SYSTEMS; INDEFINITE FUNCTIONALS; MORSE-THEORY; EXISTENCE; ORBITS;
D O I
10.1216/RMJ-2014-44-5-1715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper continues our study on the existence and multiplicity of periodic solutions to delay differential equations of the form (z) over dot(t) = -f(z(t-1))-f(z(t-2))-...-f(z(t - n + 1)), where z is an element of R-N, f is an element of C(R-N, R-N) and n > 1 is an odd number. By using the Galerkin approximation method and the S-1-index theory in the critical point theory, some known results for Kaplan-Yorke type differential delay equations are generalized to the higher-dimensional case. As a result, the Kaplan-Yorke conjecture is proved to be true in the case of higher-dimensional systems.
引用
收藏
页码:1715 / 1744
页数:30
相关论文
共 27 条
[1]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[2]  
[Anonymous], 1989, APPL MATH SCI
[3]  
ARINO O, 1989, DIFFERENTIAL INTEGRA, V2, P162
[4]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[5]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[6]   THE EXISTENCE OF PERIODIC-SOLUTIONS OF THE EQUATION X'(T) = -F(X(T), X(T-TAU)) [J].
CHEN, YS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (01) :227-237
[7]   Periodic solutions for a class of non-autonomous differential delay equations [J].
Cheng, Rong ;
Xu, Junxiang .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (06) :793-809
[8]  
Cima A., 2001, ANN DIFFER EQU, V17, P205
[9]   Multiple periodic solutions of asymptotically linear Hamiltonian systems [J].
Degiovanni, M ;
Fannio, LO .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (08) :1437-1446
[10]   EXACT FORMULAS FOR PERIODIC-SOLUTIONS OF X(T+1)=ALPHA-(-X(T)+BX3(T)) [J].
DORMAYER, P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (05) :765-775