Record high-gradient SRF beam acceleration at Fermilab

被引:17
作者
Broemmelsiek, D. [1 ]
Chase, B. [1 ]
Edstrom, D. [1 ]
Harms, E. [1 ]
Leibfrit, J. [1 ]
Nagaitsev, S. [1 ]
Pischalnikov, Y. [1 ]
Romanov, A. [1 ]
Ruan, J. [1 ]
Schappert, W. [1 ]
Shiltsev, V [1 ]
Thurman-Keup, R. [1 ]
Valishev, A. [1 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
基金
美国能源部;
关键词
linear accelerator; superconducting RF; electron source; beam diagnostics; OPTICS;
D O I
10.1088/1367-2630/aaec57
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many modern and future particle accelerators employ high gradient superconducting RF (SRF) to generate beams of high energy, high intensity and high brightness for research in high energy and nuclear physics, basic energy sciences, etc. In this paper we report the record performance large-scale SRF system with average beam accelerating gradient matching the International Linear Collider (ILC) specification of 31.5 MV m(-1). Design of the eight cavity 1.3 GHz SRF cryomodule, its performance without the beam and results of the system commissioning with high intensity electron beam at Fermilab Accelerator Science and Technology (FAST) facility are presented. We also briefly discuss opportunities for further beam studies and tests at FAST including those on even higher gradient and more efficient SRF acceleration, as well as exploration of the system performance with full ILC-type beam specifications.
引用
收藏
页数:11
相关论文
共 50 条
[1]  
[Anonymous], 2007, Technical Design Report DESY 2006-097
[2]   IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program [J].
Antipov, S. ;
Broemmelsiek, D. ;
Bruhwiler, D. ;
Edstrom, D. ;
Harms, E. ;
Lebedev, V. ;
Leibfritz, J. ;
Nagaitsev, S. ;
Park, C. S. ;
Piekarz, H. ;
Piot, P. ;
Prebys, E. ;
Romanov, A. ;
Ruan, J. ;
Sen, T. ;
Stancari, G. ;
Thangaraj, C. ;
Thurman-Keup, R. ;
Valishev, A. ;
Shiltsev, V. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[3]  
Aune B., 2000, Physical Review Special Topics-Accelerators and Beams, V3, DOI 10.1103/PhysRevSTAB.3.092001
[4]  
Behnke T, 2013, 2013040 ILC GLOB DES, V1
[5]  
Belomestnykh S, 2012, REV ACCEL SCI TECH, P147, DOI 10.1142/S179362681230006X
[6]  
Boussard D, 2013, HDB ACCELERATOR PHYS, P129
[7]   Niobium superconducting rf cavity fabrication by electrohydraulic forming [J].
Cantergiani, E. ;
Atieh, S. ;
Leaux, F. ;
Fontenla, A. T. Perez ;
Prunet, S. ;
Dufay-Chanat, L. ;
Koettig, T. ;
Bertinelli, F. ;
Capatina, O. ;
Favre, G. ;
Gerigk, F. ;
Jeanson, A. C. ;
Fuzeau, J. ;
Avrillaud, G. ;
Alleman, D. ;
Bonafe, J. ;
Marty, P. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2016, 19 (11)
[8]   High field Q slope and the effect of low-temperature baking at 3 GHz [J].
Ciovati, G. ;
Eremeev, G. ;
Hannon, F. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2018, 21 (01)
[9]  
Edelen A, 2018, P IPAC 18 VANC CAN
[10]  
Eshraqi M., 2016, P IPAC2016, P947