Periodic solutions for a kind of second order differential equation with multiple deviating arguments

被引:56
作者
Lu, SP [1 ]
Ge, WG
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solution; continuation theorem; deviating argument;
D O I
10.1016/S0096-3003(02)00536-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of continuation theorem of coincidence degree theory, some new results on the existence, and nonexistence of periodic solutions for a kind of second order functional differential equation with multiple deviating arguments are obtained. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 11 条
[1]  
Din T, 1993, J DIFFER EQUATIONS, V105, P364
[2]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY POSITIVELY HOMOGENEOUS DIFFERENTIAL-EQUATIONS [J].
FONDA, A ;
HABETS, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :68-97
[3]  
Game RE., 1977, COINCIDENCE DEGREE N
[4]  
GE W, 1991, J NONLINEAR ANAL TMA, V16, P183
[5]   PERIODIC-SOLUTIONS OF A 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATION - A NECESSARY AND SUFFICIENT CONDITION FOR NONRESONANCE [J].
GOSSEZ, JP ;
OMARI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (01) :67-82
[6]  
Huang X., 1994, CHINESE SCI BULL, V39, P201
[7]  
LAYTON W, 1980, J MATH ANAL, V77, P443
[8]  
[鲁世平 Lu Shiping], 2002, [数学学报, Acta Mathematica Sinica], V45, P811
[9]  
Ma SW, 1998, NONLINEAR ANAL-THEOR, V34, P443, DOI 10.1016/S0362-546X(97)00664-0
[10]   An abstract existence theorem at resonance and its applications [J].
Ma, SW ;
Wang, ZC ;
Yu, JS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :274-294