The utility of Shewanella japonica for microbial fuel cells

被引:31
作者
Biffinger, Justin C. [1 ]
Fitzgerald, Lisa A. [1 ]
Ray, Ricky [2 ]
Little, Brenda J. [2 ]
Lizewski, Stephen E. [1 ]
Petersen, Emily R. [3 ]
Ringeisen, Bradley R. [1 ]
Sanders, Wesley C. [1 ]
Sheehan, Paul E. [1 ]
Pietron, Jeremy J. [1 ]
Baldwin, Jeffrey W. [4 ]
Nadeau, Lloyd J. [5 ]
Johnson, Glenn R. [5 ]
Ribbens, Meghann [6 ]
Finkel, Steven E. [6 ]
Nealson, Kenneth H. [7 ]
机构
[1] USN, Res Lab, Div Chem, Washington, DC 20375 USA
[2] USN, Res Lab, Div Oceanog, John C Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA
[3] Nova Res Inc, Alexandria, VA 22308 USA
[4] USN, Res Lab, Acoust Div, Washington, DC 20375 USA
[5] USAF, Res Lab, Microbiol & Appl Biochem Div, Tyndall AFB, FL 32403 USA
[6] Univ So Calif, Dept Biol Sci, Mol & Computat Biol Sect, Los Angeles, CA 90089 USA
[7] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA
关键词
Microbial fuel cell; Shewanella; Sucrose; Mediators; Carbohydrate; ELECTRICITY PRODUCTION; BIOFILM; REDUCTION; BACTERIA; FLAVINS; GROWTH; OXIDE; MR-1;
D O I
10.1016/j.biortech.2010.06.078
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However. S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source. Published by Elsevier Ltd.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 38 条
[31]   Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes [J].
Richter, Hanno ;
Lanthier, Martin ;
Nevin, Kelly P. ;
Lovley, Derek R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (16) :5347-5353
[32]   High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10 [J].
Ringeisen, BR ;
Henderson, E ;
Wu, PK ;
Pietron, J ;
Ray, R ;
Little, B ;
Biffinger, JC ;
Jones-Meehan, JM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (08) :2629-2634
[33]   Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency [J].
Schroeder, Uwe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) :2619-2629
[34]   Initial phases of biofilm formation in Shewanella oneidensis MR-1 [J].
Thormann, KM ;
Saville, RM ;
Shukla, S ;
Pelletier, DA ;
Spormann, AM .
JOURNAL OF BACTERIOLOGY, 2004, 186 (23) :8096-8104
[35]   Secretion of flavins by Shewanella species and their role in extracellular electron transfer [J].
von Canstein, Harald ;
Ogawa, Jun ;
Shimizu, Sakayu ;
Lloyd, Jonathan R. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (03) :615-623
[36]   Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy [J].
Watanabe, Kazuya .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2008, 106 (06) :528-536
[37]   Techniques for the study and development of microbial fuel cells: an electrochemical perspective [J].
Zhao, Feng ;
Slade, Robert C. T. ;
Varcoe, John R. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (07) :1926-1939
[38]   Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell [J].
Zuo, Yi ;
Xing, Defeng ;
Regan, John M. ;
Logan, Bruce E. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (10) :3130-3137