Frozen path approximation for turbulent diffusion and fractional Brownian motion in random flows

被引:4
作者
Fannjiang, A
Komorowski, T
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Marie Curie Sklodowska Univ, Inst Math, PL-20031 Lublin, Poland
[3] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
turbulent transport; fractional Brownian motion; Taylor-Kubo formula;
D O I
10.1137/S0036139998335293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the conditions for the frozen path approximation for turbulent transport in a class of nonmixing Gaussian flows with long-range correlation. We identify the regimes of fractional Brownian motion limit as well as the Brownian motion limit.
引用
收藏
页码:2042 / 2062
页数:21
相关论文
共 22 条
[1]  
[Anonymous], 1989, FLOW TRANSPORT POROU, DOI DOI 10.1007/978-3-642-75015-1
[2]   Fractional Brownian motions and enhanced diffusion in a unidirectional wave-like turbulence [J].
Fannjiang, A ;
Komorowski, T .
JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) :1071-1095
[3]   Diffusive and nondiffusive limits of transport in nonmixing flows [J].
Fannjiang, A ;
Komorowski, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :909-923
[4]  
Fannjiang A, 2000, ANN APPL PROBAB, V10, P1100
[5]  
Fannjiang A, 1999, ANN APPL PROBAB, V9, P591
[6]  
Fannjiang A. C., 2000, B POL ACAD SCI, V48, P253
[7]   Phase diagram for turbulent transport: sampling drift, eddy diffusivity and variational principles (vol 136, pg 145, 2000) [J].
Fannjiang, AC .
PHYSICA D, 2001, 157 (1-2) :166-168
[8]   Phase diagram for turbulent transport: sampling drift, eddy diffusivity and variational principles [J].
Fannjiang, AC .
PHYSICA D, 2000, 136 (1-2) :145-174
[9]  
GLIMM J, 1981, QUANTUM PHYSICS
[10]  
Janson S., CAMBRIDGE TEXTS MATH