New source technologies and their impact on future light sources

被引:27
作者
Carlsten, B. E. [1 ]
Colby, E. R. [2 ]
Esarey, E. H. [3 ]
Hogan, M. [2 ]
Kaertner, F. X. [4 ]
Graves, W. S. [4 ]
Leemans, W. P. [3 ]
Rao, T. [5 ]
Rosenzweig, J. B. [6 ]
Schroeder, C. B. [3 ]
Sutter, D. [7 ]
White, W. E. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] SLAC Natl Accelerator Ctr, Menlo Pk, CA 94025 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[4] MIT, Cambridge, MA 02142 USA
[5] Brookhaven Natl Lab, Upton, NY 11973 USA
[6] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[7] Univ Maryland, College Pk, MD 20742 USA
关键词
Free-electron laser; Laser-plasma acceleration; Plasma-wakefield acceleration; Inverse-Compton scatting; High-harmonic generation; Direct-laser acceleration; FREE-ELECTRON LASER; HARMONIC-GENERATION; DRIVEN; FIELD; EMISSION; BEAMS;
D O I
10.1016/j.nima.2010.06.100
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Emerging technologies are critically evaluated for their feasibility in future light sources. We consider both new technologies for electron beam generation and acceleration suitable for X-ray free-electron lasers (FELs), as well as alternative photon generation technologies including the relatively mature inverse Compton scattering and laser high-harmonic generation. Laser-driven plasma wakefield acceleration is the most advanced of the novel acceleration technologies, and may be suitable to generate electron beams for X-ray FELs in a decade. We provide research recommendations to achieve the needed parameters for driving future light sources, including necessary advances in laser technology. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:657 / 668
页数:12
相关论文
共 62 条
[41]   High-brightness high-order harmonic generation by truncated Bessel beams in the sub-10-fs regime [J].
Nisoli, M ;
Priori, E ;
Sansone, G ;
Stagira, S ;
Cerullo, G ;
De Silvestri, S ;
Altucci, C ;
Bruzzese, R ;
de Lisio, C ;
Villoresi, P ;
Poletto, L ;
Pascolini, M ;
Tondello, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (03) :4-033902
[42]   Proposed few-optical cycle laser-driven particle accelerator structure [J].
Plettner, T. ;
Lu, P. P. ;
Byer, R. L. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2006, 9 (11)
[43]   Proof-of-principle experiment for laser-driven acceleration of relativistic electrons in a semi-infinite vacuum [J].
Plettner, T ;
Byer, RL ;
Colby, E ;
Cowan, B ;
Sears, CMS ;
Spencer, JE ;
Siemann, RH .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2005, 8 (12) :1-12
[44]   Proposed dielectric-based microstructure laser-driven undulator [J].
Plettner, T. ;
Byer, R. L. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2008, 11 (03)
[45]   Limits on production of narrow band photons from inverse Compton scattering [J].
Rosenzweig, J. ;
Williams, O. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (23) :4333-4342
[46]   A PROPOSED DIELECTRIC-LOADED RESONANT LASER ACCELERATOR [J].
ROSENZWEIG, J ;
MUROKH, A ;
PELLEGRINI, C .
PHYSICAL REVIEW LETTERS, 1995, 74 (13) :2467-2470
[47]   EXPERIMENTAL-OBSERVATION OF PLASMA WAKE-FIELD ACCELERATION [J].
ROSENZWEIG, JB ;
CLINE, DB ;
COLE, B ;
FIGUEROA, H ;
GAI, W ;
KONECNY, R ;
NOREM, J ;
SCHOESSOW, P ;
SIMPSON, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (01) :98-101
[48]  
ROSENZWEIG JB, 2008, P 30 INT FREE ELECT
[49]   Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction [J].
Rousse, A ;
Phuoc, KT ;
Shah, R ;
Pukhov, A ;
Lefebvre, E ;
Malka, V ;
Kiselev, S ;
Burgy, F ;
Rousseau, JP ;
Umstadter, D ;
Hulin, D .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :135005-1
[50]  
RUTH R, 1993, SLAC PUB, V6293