Compactness and existence results for quasilinear elliptic problems with singular or vanishing potentials

被引:5
作者
Badiale, Marino [1 ]
Guida, Michela [1 ]
Rolando, Sergio [2 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 53, I-20125 Milan, Italy
关键词
Weighted Sobolev spaces; compact embeddings; quasilinear elliptic PDEs; unbounded or decaying potentials; WEIGHTED SOBOLEV SPACES; EQUATIONS; EMBEDDINGS;
D O I
10.1142/S0219530521500020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given N >= 3, 1 < p < N, two measurable functions V (r) >= 0 and K(r) > 0, and a continuous function A(r) > 0 (r > 0), we study the quasilinear elliptic equation -div(A(|x|)| del u|(p-2) del u)u + V (vertical bar x vertical bar)vertical bar u vertical bar(p-2)u = K(vertical bar x vertical bar)f(u)in R-N. We find existence of nonnegative solutions by the application of variational methods, for which we have to study the compactness of the embedding of a suitable function space X into the sum of Lebesgue spaces L-q1(K) + L-q2(K), and thus into L-q(K) (= L-q(K) + L-q(K)) as a particular case. Our results do not require any compatibility between how the potentials A, V and K behave at the origin and at infinity, and essentially rely on power type estimates of the relative growth of V and K, not of the potentials separately. The nonlinearity f has a double-power behavior, whose standard example is f(t) =min{t(q1-1),t(q2-1)}, recovering the usual case of a single-power behavior when q(1) = q(2).
引用
收藏
页码:751 / 777
页数:27
相关论文
共 15 条
  • [1] Weighted quasilinear eigenvalue problems in exterior domains
    Anoop, T. V.
    Drabek, Pavel
    Sasi, Sarath
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 961 - 975
  • [2] Radial solutions of a biharmonic equation with vanishing or singular radial potentials
    Badiale, Marino
    Greco, Stefano
    Rolando, Sergio
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 : 97 - 122
  • [3] Radial Nonlinear Elliptic Problems with Singular or Vanishing Potentials
    Badiale, Marino
    Zaccagni, Federica
    [J]. ADVANCED NONLINEAR STUDIES, 2018, 18 (02) : 409 - 428
  • [4] Compactness and existence results for the p-Laplace equation
    Badiale, Marino
    Guida, Michela
    Rolando, Sergio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) : 345 - 370
  • [5] Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: existence
    Badiale, Marino
    Guida, Michela
    Rolando, Sergio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (06):
  • [6] Compactness and existence results in weighted Sobolev spaces of radial functions. Part I: compactness
    Badiale, Marino
    Guida, Michela
    Rolando, Sergio
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1061 - 1090
  • [7] Sum of weighted Lebesgue spaces and nonlinear elliptic equations
    Badiale, Marino
    Pisani, Lorenzo
    Rolando, Sergio
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (04): : 369 - 405
  • [8] Sobolev type embeddings and an inhomogeneous quasilinear elliptic equation on RN with singular weights
    Cai, Hongrui
    Su, Jiabao
    Sun, Yang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 96 : 59 - 67
  • [9] Nonlinear Schrodinger equations without compatibility conditions on the potentials
    Guida, Michela
    Rolando, Sergio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) : 347 - 363
  • [10] Weighted Sobolev embedding with unbounded and decaying radial potentials
    Su, Jiabao
    Wang, Zhi-Qiang
    Willem, Michel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) : 201 - 219