Phase-change materials for energy-efficient photonic memory and computing

被引:28
作者
Zhou, Wen [1 ]
Farmakidis, Nikolaos [1 ]
Feldmann, Johannes [1 ]
Li, Xuan [1 ]
Tan, James [1 ]
He, Yuhan [1 ]
Wright, C. David [2 ]
Pernice, Wolfram H. P. [3 ,4 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford, England
[2] Univ Exeter, Dept Engn, Oxford, England
[3] Univ Munster, Inst Phys, Munster, Germany
[4] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
DEVICES;
D O I
10.1557/s43577-022-00358-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neuromorphic algorithms achieve remarkable performance milestones in tasks where humans have traditionally excelled. The breadth of data generated by these paradigms is, however, unsustainable by conventional computing chips. In-memory computing hardware aims to mimic biological neural networks and has emerged as a viable path in overcoming fundamental limitations of the von Neumann architecture. By eliminating the latency and energy losses associated with transferring data between the memory and central processing unit (CPU), these systems promise to improve on both speed and energy. Photonic implementations using on-chip, nonvolatile memories are particularly promising as they aim to deliver energy-efficient, high-speed, and high-density data processing within the photonic memory with the multiplexing advantages of optics. In this article, we overview recent progress in this direction that integrates phase-change material (PCM) memory elements with integrated optoelectronics. We compare performances of PCM devices using optoelectronic programming schemes and show that energy consumption can be significantly reduced to 60 pJ using picosecond (ps) optical pulse programming and plasmonic nanogap devices with a programming speed approaching 1 GHz. With these energy-efficient waveguide memories, concepts of in-memory photonic computing are implemented based on crossbar arrays. Compared with digital electronic accelerators: application-specific integrated circuits (ASICs) and graphics processing units (GPUs), photonic cores promise 1-3 orders higher compute density and energy efficiency, although much more work toward commercialization is still required.
引用
收藏
页码:502 / 510
页数:9
相关论文
共 41 条
[1]  
Boroumand A, 2018, ACM SIGPLAN NOTICES, V53, P316, DOI [10.1145/3173162.3173177, 10.1145/3296957.3173177]
[2]   Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials [J].
Cheng, Zengguang ;
Rios, Carlos ;
Youngblood, Nathan ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
ADVANCED MATERIALS, 2018, 30 (32)
[3]   On-chip photonic synapse [J].
Cheng, Zengguang ;
Rios, Carlos ;
Pernice, Wolfram H. P. ;
Wright, C. David ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2017, 3 (09)
[4]   Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material [J].
Delaney, Matthew ;
Zeimpekis, Ioannis ;
Du, Han ;
Yan, Xingzhao ;
Banakar, Mehdi ;
Thomson, David J. ;
Hewak, Daniel W. ;
Muskens, Otto L. .
SCIENCE ADVANCES, 2021, 7 (25)
[5]   A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3 [J].
Delaney, Matthew ;
Zeimpekis, Ioannis ;
Lawson, Daniel ;
Hewak, Daniel W. ;
Muskens, Otto L. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
[6]   Non-Volatile Reconfigurable Integrated Photonics Enabled by Broadband Low-Loss Phase Change Material [J].
Fang, Zhuoran ;
Zheng, Jiajiu ;
Saxena, Abhi ;
Whitehead, James ;
Chen, Yueyang ;
Majumdar, Arka .
ADVANCED OPTICAL MATERIALS, 2021, 9 (09)
[7]   Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials [J].
Farmakidis, Nikolaos ;
Youngblood, Nathan ;
Lee, June Sang ;
Feldmann, Johannes ;
Lodi, Alessandro ;
Li, Xuan ;
Aggarwal, Samarth ;
Zhou, Wen ;
Bogani, Lapo ;
Pernice, Wolfram Hp ;
Wright, C. David ;
Bhaskaran, Harish .
ADVANCED SCIENCE, 2022, 9 (20)
[8]   Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality [J].
Farmakidis, Nikolaos ;
Youngblood, Nathan ;
Li, Xuan ;
Tan, James ;
Swett, Jacob L. ;
Cheng, Zengguang ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
SCIENCE ADVANCES, 2019, 5 (11)
[9]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[10]   Calculating with light using a chip-scale all-optical abacus [J].
Feldmann, J. ;
Stegmaier, M. ;
Gruhler, N. ;
Rios, C. ;
Bhaskaran, H. ;
Wright, C. D. ;
Pernice, W. H. P. .
NATURE COMMUNICATIONS, 2017, 8