共 49 条
The angiotensin II type 2 receptor agonist Compound 21 is protective in experimental diabetes-associated atherosclerosis
被引:34
作者:
Chow, Bryna S. M.
[1
]
Koulis, Christine
[1
]
Krishnaswamy, Pooja
[1
]
Steckelings, Ulrike M.
[2
]
Unger, Thomas
[3
]
Cooper, Mark E.
[1
]
Jandeleit-Dahm, Karin A.
[1
]
Allen, Terri J.
[1
]
机构:
[1] Baker IDI Heart & Diabet Res Inst, JDRF Danielle Alberti Mem Ctr Diabet Complicat, Diabet Complicat Div, 75 Commercial Rd,POB 6492, Melbourne, Vic 3004, Australia
[2] Univ Southern Denmark, IMM Dept Cardiovasc & Renal Res, Odense, Denmark
[3] Maastricht Univ, Sch Cardiovasc Dis, Maastricht, Netherlands
基金:
澳大利亚国家健康与医学研究理事会;
英国医学研究理事会;
关键词:
Angiotensin II;
AT(2) receptor;
Atherosclerosis;
Compound;
21;
Diabetes;
AT(2) RECEPTORS;
AT2;
RECEPTOR;
BONE-MARROW;
MOUSE MODEL;
BLOCKADE;
STIMULATION;
SYSTEM;
ATHEROGENESIS;
FIBROSIS;
CASCADE;
D O I:
10.1007/s00125-016-3977-5
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Aims/hypothesis Angiotensin II is well-recognised to be a key mediator in driving the pathological events of diabetes-associated atherosclerosis via signalling through its angiotensin II type 1 receptor (AT(1)R) subtype. However, its actions via the angiotensin II type 2 receptor (AT(2)R) subtype are still poorly understood. This study is the first to investigate the role of the novel selective AT(2)R agonist, Compound 21 (C21) in an experimental model of diabetes-associated atherosclerosis (DAA). Methods Streptozotocin-induced diabetic Apoe-knockout mice were treated with vehicle (0.1 mol/l citrate buffer), C21 (1 mg/kg per day), candesartan cilexetil (4 mg/kg per day) or C21 + candesartan cilexetil over a 20 week period. In vitro models of DAA using human aortic endothelial cells and monocyte cultures treated with C21 were also performed. At the end of the experiments, assessment of plaque content and markers of oxidative stress, inflammation and fibrosis were conducted. Results C21 treatment significantly attenuated aortic plaque deposition in a mouse model of DAA in vivo, in association with a decreased infiltration of macrophages and mediators of inflammation, oxidative stress and fibrosis. On the other hand, combination therapy with C21 and candesartan (AT(1)R antagonist) appeared to have a limited additive effect in attenuating the pathology of DAA when compared with either treatment alone. Similarly, C21 was found to confer profound anti-atherosclerotic actions at the in vitro level, particularly in the setting of hyperglycaemia. Strikingly, these atheroprotective actions of C21 were completely blocked by the AT(2)R antagonist PD123319. Conclusions/interpretation Taken together, these findings provide novel mechanistic and potential therapeutic insights into C21 as a monotherapy agent against DAA.
引用
收藏
页码:1778 / 1790
页数:13
相关论文