Novel Pt/MoS2 nanosheet catalyst for hydrogen production via aqueous-phase reforming of methanol

被引:7
作者
Liu, Yang [1 ,2 ]
Li, Sirui [1 ]
Zhu, Shanhui [2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5612 AP Eindhoven, Netherlands
[2] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen production; Aqueous-phase methanol reforming; Nanosheets MoS2; Clean energy; Two-dimensional material; LOW-TEMPERATURE; EVOLUTION; NANOPARTICLES; GENERATION;
D O I
10.1007/s11144-022-02275-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four kinds of Pt supported catalysts: Pt/MoS2 nanosheets, Pt/MoS2 bulk, Pt/Al2O3 and Pt/graphene were prepared through incipient wetness impregnation method. The catalytic activity of these catalysts were investigated for low temperature aqueous-phase reforming of methanol (APRM) reaction to produce H-2. Among these catalysts, 2% (wt%) Pt/MoS2 nanosheets exhibited the highest catalytic activity for APRM with a H-2 production rate of 4.85 mu mol g(cat)(-1) s(-1) at 220 degrees C. Scanning electron microscope was used to check the overall morphology of MoS2 nanosheets. Transmission electron microscope was used to detect number of layers of MoS2 nanosheets as well as Pt particle size distribution. Characterizations results illustrated that the thickness of MoS2 nanosheets and Pt particle size are two main reasons influencing the catalytic performance of Pt/MoS2 nanosheets for APRM reaction. Furthermore, the results of temperature-programmed surface reaction proved that MoS2 nanosheets promoted Pt enables higher H-2 production in APRM reaction.
引用
收藏
页码:2579 / 2589
页数:11
相关论文
共 25 条
[1]   HYDROGEN-PRODUCTION BY STEAM REFORMING OF METHANOL FOR POLYMER ELECTROLYTE FUEL-CELLS [J].
AMPHLETT, JC ;
CREBER, KAM ;
DAVIS, JM ;
MANN, RF ;
PEPPLEY, BA ;
STOKES, DM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1994, 19 (02) :131-137
[2]   Methanol Production via CO2 Hydrogenation: Sensitivity Analysis and Simulation-Based Optimization [J].
Borisut, Prapatsorn ;
Nuchitprasittichai, Aroonsri .
FRONTIERS IN ENERGY RESEARCH, 2019, 7
[3]  
bp, Statistical review of World Energy -2021'
[4]   Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts [J].
Breen, JP ;
Ross, JRH .
CATALYSIS TODAY, 1999, 51 (3-4) :521-533
[5]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[6]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[7]   Hydrogen-Generation Materials for Portable Applications [J].
Deng, Zhen-Yan ;
Ferreira, Jose M. F. ;
Sakka, Yoshio .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (12) :3825-3834
[8]   Metal dichalcogenide nanosheets: preparation, properties and applications [J].
Huang, Xiao ;
Zeng, Zhiyuan ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (05) :1934-1946
[9]   Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution [J].
Laursen, Anders B. ;
Kegnaes, Soren ;
Dahl, Soren ;
Chorkendorff, Ib .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5577-5591
[10]   MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction [J].
Li, Yanguang ;
Wang, Hailiang ;
Xie, Liming ;
Liang, Yongye ;
Hong, Guosong ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) :7296-7299