SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS

被引:68
作者
Ding, Xue [1 ,2 ]
Jiang, Tiefeng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130023, Peoples R China
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Random graph; random matrix; adjacency matrix; Laplacian matrix; largest eigenvalue; spectral distribution; semi-circle law; free convolution; SAMPLE COVARIANCE MATRICES; EIGENVALUE DISTRIBUTION; LARGE DEVIATIONS; DENSITY; STATES;
D O I
10.1214/10-AAP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner's semi-circular law; (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner's semi-circular law.
引用
收藏
页码:2086 / 2117
页数:32
相关论文
共 46 条
  • [11] Bai ZD, 1999, STAT SINICA, V9, P611
  • [12] Bai ZD, 2008, STAT SINICA, V18, P425
  • [13] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [14] Random incidence matrices: Moments of the spectral density
    Bauer, M
    Golinelli, O
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) : 301 - 337
  • [15] Ben Arous G, 2001, PROBAB THEORY REL, V120, P1
  • [16] Bollobas B., 1979, GRADUATE TEXTS MATH, V63
  • [17] Bollobas B., 2001, RANDOM GRAPHS, DOI 10.1017/CBO9780511814068
  • [18] Spectral measure of large random Hankel, Markov and Toeplitz matrices
    Bryc, W
    Dembo, A
    Jiang, TF
    [J]. ANNALS OF PROBABILITY, 2006, 34 (01) : 1 - 38
  • [19] Chung F.R.K., 1997, Spectral graph theory
  • [20] Dudley R., 2002, CAMBRIDGE STUDIES AD, V74