Boundedness of quasilinear integral operators of iterated type with Oinarov's kernel on the cone of monotone functions

被引:2
作者
Stepanov, V. D. [1 ]
Shambilova, G. E. [1 ]
机构
[1] RUDN Univ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
HARDY-TYPE INEQUALITIES; WEIGHTED INEQUALITIES; SUBLINEAR-OPERATORS;
D O I
10.1134/S1064562417040056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions for the weighted boundedness of a class of positive quasilinear two-kernel integral operators of iterated type on the real half-line are given.
引用
收藏
页码:315 / 320
页数:6
相关论文
共 15 条
[1]   Reduction theorems for weighted integral inequalities on the cone of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) :597-664
[2]  
Goldman ML, 2005, DOKL MATH, V71, P209
[3]   Hardy inequality with three measures on monotone functions [J].
Johansson, Maria ;
Stepanov, Vladimir D. ;
Ushakova, Elena P. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (03) :393-413
[4]  
Persson L.-E., 2016, J INEQUAL APPL, V237
[5]   HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS [J].
Popova, O. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) :152-167
[6]  
Prokhorov DV, 2016, SB MATH+, V207, P1159, DOI [10.1070/SM8535, 10.4213/sm8535]
[7]   On a class of weighted inequalities containing quasilinear operators [J].
Prokhorov, D. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) :272-287
[8]   On the boundedness of a class of sublinear operators [J].
Prokhorov, D. V. .
DOKLADY MATHEMATICS, 2015, 92 (02) :602-605
[9]   Estimates for a class of sublinear integral operators [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2014, 89 (03) :372-377
[10]   Weighted estimates for a class of sublinear operators [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2013, 88 (03) :721-723