Large eddy simulation of unsteady lean stratified premixed combustion

被引:48
作者
Duwig, C. [1 ]
Fureby, C.
机构
[1] Lund Univ, Dept Energy Sci, Div Fluid Mech, SE-22100 Lund, Sweden
[2] FOI, Swedish Def Res Agcy, Div Weapons & Protect Warheads & Prop, SE-14725 Tumba, Sweden
关键词
large eddy simulation; premixed combustion; stratified combustion; flame response; thermo-acoustic instability;
D O I
10.1016/j.combustflame.2007.04.004
中图分类号
O414.1 [热力学];
学科分类号
摘要
Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (c) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 46 条
[1]  
Abbot DE., 1962, Trans ASME D: J Basic Eng, V84, P317, DOI [10. 1115/1. 3657313, DOI 10.1115/1.3657313, 10.1115/1.3657313]
[2]  
[Anonymous], OBJ OR SOFTW REACT F
[3]  
[Anonymous], 20030958 AIAA
[4]  
Bardina J., 1980, AIAA J, V80, P80
[5]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[6]   Experimental analysis of combusting flows developing over a plane-symmetric expansion [J].
Besson, M ;
Bruel, P ;
Champion, JL ;
Deshaies, B .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2000, 14 (01) :59-67
[7]  
Boris J, 1990, WHITHER TURBULENCE T, DOI [10.1007/3-540-52535-1_53, DOI 10.1007/3-540-52535-1_53]
[8]  
BORIS JP, 1992, FLUID DYN RES, V10, P199, DOI 10.1016/0169-5983(92)90023-P
[9]  
BRUEL P, 2003, DELIVERABLE D 3 12 1
[10]  
BRUEL P, COMMUNICATION