A Kernel Analysis of Feature Learning in Deep Neural Networks

被引:2
|
作者
Canatar, Abdulkadir [1 ]
Pehlevan, Cengiz [2 ,3 ]
机构
[1] Flatiron Inst, Ctr Computat Neurosci, New York, NY USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
来源
2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON) | 2022年
关键词
deep learning; kernel methods;
D O I
10.1109/ALLERTON49937.2022.9929375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks learn useful representations of data, yet the nature of these representations has not been fully understood. Here, we empirically study the kernels induced by the layer representations during training by analyzing their kernel alignment to the network's target function. We show that representations from earlier to deeper layers increasingly align with the target task for both training and test sets, implying better generalization. We analyze these representations across different architectures, optimization methods and batch sizes. Furthermore, we compare the Neural Tangent Kernel (NTK) of deep neural networks and its alignment with the target during training and find that NTK-target alignment also increases during training.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks
    Belfer, Yuval
    Geifman, Amnon
    Galun, Meirav
    Basri, Ronen
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 49
  • [2] IMPROVED MUSIC FEATURE LEARNING WITH DEEP NEURAL NETWORKS
    Sigtia, Siddharth
    Dixon, Simon
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [3] Enhancing deep neural networks via multiple kernel learning
    Lauriola, Ivano
    Gallicchio, Claudio
    Aiolli, Fabio
    PATTERN RECOGNITION, 2020, 101
  • [4] Deep Kernel: Learning Kernel Function from Data Using Deep Neural Network
    Le, Linh
    Hao, Jie
    Xie, Ying
    Priestley, Jennifer
    2016 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT), 2016, : 1 - 7
  • [5] IMPROVING DEEP CONVOLUTIONAL NEURAL NETWORKS WITH UNSUPERVISED FEATURE LEARNING
    Kien Nguyen
    Fookes, Clinton
    Sridharan, Sridha
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2270 - 2274
  • [6] CONVOLUTIONAL NEURAL NETWORKS FOR DEEP FEATURE LEARNING IN RETINAL VESSEL SEGMENTATION
    Khalaf, Aya F.
    Yassine, Inas A.
    Fahmy, Ahmed S.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 385 - 388
  • [7] Deep Kernel Principal Component Analysis for multi-level feature learning
    Tonin, Francesco
    Tao, Qinghua
    Patrinos, Panagiotis
    Suykens, Johan A. K.
    NEURAL NETWORKS, 2024, 170 : 578 - 595
  • [8] DEEP KERNEL LEARNING NETWORKS WITH MULTIPLE LEARNING PATHS
    Xu, Ping
    Wang, Yue
    Chen, Xiang
    Tian, Zhi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4438 - 4442
  • [9] Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey
    Jing, Longlong
    Tian, Yingli
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (11) : 4037 - 4058
  • [10] KERNEL METHODS MATCH DEEP NEURAL NETWORKS ON TIMIT
    Huang, Po-Sen
    Avron, Haim
    Sainath, Tara N.
    Sindhwani, Vikas
    Ramabhadran, Bhuvana
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,