Recursive Consensus Clustering for novel subtype discovery from transcriptome data

被引:9
作者
Sonpatki, Pranali [1 ]
Shah, Nameeta [1 ]
机构
[1] Mazumdar Shaw Med Fdn, Mazumdar Shaw Ctr Translat Res, Narayana Hrudayalaya Hlth City, Bangalore, Karnataka, India
关键词
CLASSIFICATION;
D O I
10.1038/s41598-020-67016-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale transcriptomic data is used by biologists for the discovery of new molecular patterns or cell subpopulations. Clustering is one of the most popular methods for dimensionality reduction and data analysis for large scale datasets. The major problem while clustering the data is the selection of the optimal number of clusters (k) for each dataset and to discover new insights from it. We have developed Recursive Consensus Clustering (RCC), an unsupervised clustering algorithm for novel subtype discovery from both bulk and single-cell datasets. RCC is available as an R package and facilitates the generation of new biological insights through intuitive visualization of clustering results.
引用
收藏
页数:16
相关论文
共 28 条
  • [1] Agarwal P., 2011, ISSUES CHALLENGES TO
  • [2] Survey of State-of-the-Art Mixed Data Clustering Algorithms
    Ahmad, Amir
    Khan, Shehroz S.
    [J]. IEEE ACCESS, 2019, 7 : 31883 - 31902
  • [3] Genomic Classification of Cutaneous Melanoma
    Akbani, Rehan
    Akdemir, Kadir C.
    Aksoy, B. Arman
    Albert, Monique
    Ally, Adrian
    Amin, Samirkumar B.
    Arachchi, Harindra
    Arora, Arshi
    Auman, J. Todd
    Ayala, Brenda
    Baboud, Julien
    Balasundaram, Miruna
    Balu, Saianand
    Barnabas, Nandita
    Bartlett, John
    Bartlett, Pam
    Bastian, Boris C.
    Baylin, Stephen B.
    Behera, Madhusmita
    Belyaev, Dmitry
    Benz, Christopher
    Bernard, Brady
    Beroukhim, Rameen
    Bir, Natalie
    Black, Aaron D.
    Bodenheimer, Tom
    Boice, Lori
    Boland, Genevieve M.
    Bono, Riccardo
    Bootwalla, Moiz S.
    Bosenberg, Marcus
    Bowen, Jay
    Bowlby, Reanne
    Bristow, Christopher A.
    Brockway-Lunardi, Laura
    Brooks, Denise
    Brzezinski, Jakub
    Bshara, Wiam
    Buda, Elizabeth
    Burns, William R.
    Butterfield, Yaron S. N.
    Button, Michael
    Calderone, Tiffany
    Cappellini, Giancarlo Antonini
    Carter, Candace
    Carter, Scott L.
    Cherney, Lynn
    Cherniack, Andrew D.
    Chevalier, Aaron
    Chin, Lynda
    [J]. CELL, 2015, 161 (07) : 1681 - 1696
  • [4] Differential expression analysis for sequence count data
    Anders, Simon
    Huber, Wolfgang
    [J]. GENOME BIOLOGY, 2010, 11 (10):
  • [5] [Anonymous], 2018, Cell, V173, pe6
  • [6] [Anonymous], 2007, 18 ANN ACM SIAM S DI
  • [7] Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing
    Blase, Fernando H.
    Cao, Xiaoyi
    Zhong, Sheng
    [J]. GENOME RESEARCH, 2014, 24 (11) : 1787 - 1796
  • [8] Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases
    Chen, Fengju
    Zhang, Yiqun
    Gibbons, Don L.
    Deneen, Benjamin
    Kwiatkowski, David J.
    Ittmann, Michael
    Creighton, Chad J.
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (09) : 2182 - 2193
  • [9] Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma
    Darmanis, Spyros
    Sloan, Steven A.
    Croote, Derek
    Mignardi, Marco
    Chernikova, Sophia
    Samghababi, Peyman
    Zhang, Ye
    Neff, Norma
    Kowarsky, Mark
    Caneda, Christine
    Li, Gordon
    Chang, Steven D.
    Connolly, Ian David
    Li, Yingmei
    Barres, Ben A.
    Gephart, Melanie Hayden
    Quake, Stephen R.
    [J]. CELL REPORTS, 2017, 21 (05): : 1399 - 1410
  • [10] A survey of human brain transcriptome diversity at the single cell level
    Darmanis, Spyros
    Sloan, Steven A.
    Zhang, Ye
    Enge, Martin
    Caneda, Christine
    Shuer, Lawrence M.
    Gephart, Melanie G. Hayden
    Barres, Ben A.
    Quake, Stephen R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) : 7285 - 7290