LOCAL AND GLOBAL ANALYSIS OF MULTIPLIER METHODS FOR CONSTRAINED OPTIMIZATION IN BANACH SPACES

被引:11
作者
Boergens, Eike [1 ]
Kanzow, Christian [1 ]
Steck, Daniel [1 ]
机构
[1] Univ Wurzburg, Inst Math, Campus Hubland Nord,Emil Fischer St 30, D-97074 Wurzburg, Germany
关键词
augmented Lagrangian method; multiplier-penalty method; Banach space; global convergence; second-order sufficient condition; strong local convergence; QUASI-VARIATIONAL INEQUALITIES; AUGMENTED LAGRANGIAN-METHODS; MATHEMATICAL PROGRAMS; CONVERGENCE; OPTIMALITY; STATIONARITY; EQUATIONS; DUALITY; PATH; SQP;
D O I
10.1137/19M1240186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an augmented Lagrangian method for the solution of constrained optimization problems in Banach spaces. The framework we consider is very general and encompasses a host of standard problems such as nonlinear programming, semidefinite programming, and optimal control. We analyze several convergence-related aspects of the method, including global convergence, the attainment of feasibility, and local convergence. In particular, a result is presented which guarantees local convergence of the method under the sole assumption that a solution of the problem satisfies the second-order sufficient condition. Finally, we give detailed numerical results for optimal control problems and mathematical programs with complementarity constraints.
引用
收藏
页码:3694 / 3722
页数:29
相关论文
共 51 条
[1]   ON AUGMENTED LAGRANGIAN METHODS WITH GENERAL LOWER-LEVEL CONSTRAINTS [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1286-1309
[2]   On sequential optimality conditions for smooth constrained optimization [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Martinez, J. M. .
OPTIMIZATION, 2011, 60 (05) :627-641
[3]   A NEW SEQUENTIAL OPTIMALITY CONDITION FOR CONSTRAINED OPTIMIZATION AND ALGORITHMIC CONSEQUENCES [J].
Andreani, Roberto ;
Martinez, J. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3533-3554
[4]  
[Anonymous], 1987, OBSTACLE PROBLEMS MA
[5]  
[Anonymous], 2017, CONVEX ANAL MONOTONE, DOI [DOI 10.1007/978-3-319-48311-5, 10.1007/978-3-319-48311-5]
[6]  
[Anonymous], 1995, NONLINEAR PROGRAMMIN
[7]   Augmented Lagrangian techniques for elliptic state constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1524-1543
[8]   A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems [J].
Bergounioux, M ;
Haddou, M ;
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :495-521
[9]  
Bertsekas D. P., 1982, CONSTRAINED OPTIMIZA, DOI [10.1016/c2013-0-10366-2., 10.1016/c2013-0-10366-2, DOI 10.1016/C2013-0-10366-2.]
[10]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365