A POSTERIORI ERROR ANALYSIS OF PARAMETERIZED LINEAR SYSTEM USING SPECTRAL METHODS

被引:22
作者
Butler, T. [1 ]
Constantine, P. [2 ]
Wildey, T. [3 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78712 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat Dept, Albuquerque, NM 87185 USA
关键词
a posteriori error analysis; adjoint problem; spectral methods; parameterized linear systems; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; UNCERTAINTY PROPAGATION; ELLIPTIC PROBLEMS; POLYNOMIAL CHAOS; APPROXIMATIONS; EVOLUTION; FLOW;
D O I
10.1137/110840522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop computable a posteriori error estimates for the pointwise evaluation of linear functionals of a solution to a parameterized linear system of equations. These error estimates are based on a variational analysis applied to polynomial spectral methods for forward and adjoint problems. We also use this error estimate to define an improved linear functional and we prove that this improved functional converges at a much faster rate than the original linear functional given a pointwise convergence assumption on the forward and adjoint solutions. The advantage of this method is that we are able to use low order spectral representations for the forward and adjoint systems to cheaply produce linear functionals with the accuracy of a higher order spectral representation. The method presented in this paper also applies to the case where only the convergence of the spectral approximation to the adjoint solution is guaranteed. We present numerical examples showing that the error in this improved functional is often orders of magnitude smaller. We also demonstrate that in higher dimensions, the computational cost required to achieve a given accuracy is much lower using the improved linear functional.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 41 条
[1]   A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes [J].
Acharjee, Swagato ;
Zabaras, Nicholas .
COMPUTERS & STRUCTURES, 2007, 85 (5-6) :244-254
[2]  
[Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. 220512815
[3]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[4]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[5]  
Bangerth W., 2003, LEC MATH
[6]   A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS [J].
Breidt, J. ;
Butler, T. ;
Estep, D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1836-1859
[7]   The PageRank vector: Properties, computation, approximation, and acceleration [J].
Brezinski, Claude ;
Redivo-Zaglia, Michela .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (02) :551-575
[8]   A COMPUTATIONAL MEASURE THEORETIC APPROACH TO INVERSE SENSITIVITY PROBLEMS II: A POSTERIORI ERROR ANALYSIS [J].
Butler, T. ;
Estep, D. ;
Sandelin, J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (01) :22-45
[9]   A POSTERIORI ERROR ANALYSIS OF STOCHASTIC DIFFERENTIAL EQUATIONS USING POLYNOMIAL CHAOS EXPANSIONS [J].
Butler, T. ;
Dawson, C. ;
Wildey, T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03) :1267-1291
[10]   A POSTERIORI ANALYSIS AND ADAPTIVE ERROR CONTROL FOR MULTISCALE OPERATOR DECOMPOSITION SOLUTION OF ELLIPTIC SYSTEMS I: TRIANGULAR SYSTEMS [J].
Carey, V. ;
Estep, D. ;
Tavener, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (01) :740-761