Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient

被引:74
作者
Dai, Haifeng [1 ,2 ]
Jiang, Bo [1 ,2 ]
Wei, Xuezhe [1 ,2 ]
机构
[1] Natl Fuel Cell Vehicle & Powertrain Syst Res & En, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Tongji Univ, Sch Automot Studies, 4800 Caoan Rd, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; impedance characterization; temperature gradient; discretization model; CHARGE ESTIMATION; STATE; MANAGEMENT; SPECTROSCOPY;
D O I
10.3390/en11010220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery impedance is essential to the management of lithium-ion batteries for electric vehicles (EVs), and impedance characterization can help to monitor and predict the battery states. Many studies have been undertaken to investigate impedance characterization and the factors that influence impedance. However, few studies regarding the influence of the internal temperature gradient, which is caused by heat generation during operation, have been presented. We have comprehensively studied the influence of the internal temperature gradient on impedance characterization and the modeling of battery impedance, and have proposed a discretization model to capture battery impedance characterization considering the temperature gradient. Several experiments, including experiments with artificial temperature gradients, are designed and implemented to study the influence of the internal temperature gradient on battery impedance. Based on the experimental results, the parameters of the non-linear impedance model are obtained, and the relationship between the parameters and temperature is further established. The experimental results show that the temperature gradient will influence battery impedance and the temperature distribution can be considered to be approximately linear. The verification results indicate that the proposed discretization model has a good performance and can be used to describe the actual characterization of the battery with an internal temperature gradient.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Hybrid Pseudorandom Sequence for Broadband Impedance Measurements of Lithium-Ion Batteries
    Du, Xinghao
    Meng, Jinhao
    Peng, Jichang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) : 6856 - 6864
  • [32] Modeling of lithium plating and lithium stripping in lithium-ion batteries
    von Lueders, Christian
    Keil, Jonas
    Webersberger, Markus
    Jossen, Andreas
    JOURNAL OF POWER SOURCES, 2019, 414 : 41 - 47
  • [33] Analysis and Estimation of Internal Temperature Characteristics of Lithium-Ion Batteries in Electric Vehicles
    Wang, Limei
    Luo, Fulin
    Xu, Ying
    Gao, Kaixu
    Zhao, Xiuliang
    Wang, Ruochen
    Pan, Chaofeng
    Liu, Liang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (19) : 7657 - 7670
  • [34] Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter
    Sun, Jinlei
    Wei, Guo
    Pei, Lei
    Lu, Rengui
    Song, Kai
    Wu, Chao
    Zhu, Chunbo
    ENERGIES, 2015, 8 (05): : 4400 - 4415
  • [35] Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries
    Koseoglou, Markos
    Tsioumas, Evangelos
    Ferentinou, Dimitra
    Jabbour, Nikolaos
    Papagiannis, Dimitrios
    Mademlis, Christos
    JOURNAL OF POWER SOURCES, 2021, 512
  • [36] Impedance based time-domain modeling of lithium-ion batteries: Part I
    Gantenbein, Sophia
    Weiss, Michael
    Ivers-Tiffee, Ellen
    JOURNAL OF POWER SOURCES, 2018, 379 : 317 - 327
  • [37] Parameter Sensitivity Analysis for Fractional-Order Modeling of Lithium-Ion Batteries
    Zhou, Daming
    Zhang, Ke
    Ravey, Alexandre
    Gao, Fei
    Miraoui, Abdellatif
    ENERGIES, 2016, 9 (03)
  • [38] An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration
    Deng, Liming
    Shen, Wenjing
    Xu, Kangkang
    Zhang, Xuhui
    ENERGIES, 2024, 17 (07)
  • [39] Internal Impedance in Determining Usability of Used Lithium-Ion Batteries in Second-Life Applications
    Tran, Minh
    Sihvo, Jussi
    Roinila, Tomi
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (05) : 6513 - 6521
  • [40] Modeling, validation, and analysis of swelling behaviors of lithium-ion batteries
    Cao, Yangzheng
    Wang, Huacui
    Liu, Binghe
    Xu, Jun
    JOURNAL OF ENERGY STORAGE, 2023, 74