New exact solutions to the mKdV equation with variable coefficients

被引:36
作者
Dai, CQ
Zhu, JM
Zhang, JF [1 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.04.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, using the variable-coefficient generalized projected Ricatti equation expansion method, we present explicit solutions of the mKDV equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:881 / 886
页数:6
相关论文
共 14 条
[1]  
ABLOWTIZ MJ, 1991, SOLITON NONLINEAR EV
[2]   ON THE INTEGRABILITY OF SYSTEMS OF NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH SUPERPOSITION PRINCIPLES [J].
BOUNTIS, TC ;
PAPAGEORGIOU, V ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1215-1224
[3]  
CARDNER CS, 1967, PHYS REV LETT, V19, P1095
[4]  
Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
[5]  
GU CH, 1995, SOLITION THEORY ITS
[6]   Variable-coefficient projective Riccati equation method and its application to a new (2+1)-dimensional simplified eneralized Broer-Kaup system [J].
Huang, DJ ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :601-607
[7]   Exact travelling wave solutions for the Boiti-Leon-Pempinelli equation [J].
Huang, DJ ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :243-247
[8]   On exact solutions of the nonlinear Schrodinger equations in optical fiber [J].
Li, B ;
Chen, Y .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :241-247
[9]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[10]  
Lou Sen-Yue, 1992, Acta Physica Sinica, V41, P182