Forecasting Groundwater Level by Artificial Neural Networks as an Alternative Approach to Groundwater Modeling

被引:41
|
作者
Chitsazan, Manouchehr [1 ]
Rahmani, Gholamreza [1 ]
Neyamadpour, Ahmad [1 ]
机构
[1] Shahid Chamran Univ, Fac Earth Sci, Ahvaz, Iran
关键词
Artificial neural network; Feed forward back propagation; Groundwater; Aghili plain; Iran;
D O I
10.1007/s12594-015-0197-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The main purpose of this article is to apply feed forward back propagation neural network (FNN) to predict groundwater level of Aghili plain, which is located in southwestern Iran. An optimal design is completed for the two hidden layers with four different algorithms: descent with momentum (GDM), Levenberg Marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). The training data for ANN is obtained from observation data. Rain, evaporation, relative humidity, temperature, discharge of irrigation canal, and groundwater recharge from the plain boundary were used in input layer while future groundwater level was used as output layer. Before training, the available data were divided into three groups, according to hydrogeological characteristics of different parts of the plain surrounding each piezometer. Statistical analysis in terms of Mean-Square-Error (MSE) and correlation coefficient (R) was used to investigate the prediction performance of ANN. FFN-LM algorithm has shown best result in the present study for all three hydrogeological groups. Now, to predict water level, the t time data (October 2003 to July 2009) and t+1 time data (October 2004 to July 2010) were used as input and output respectively. The best condition of this network was achieved for each group of data. Next, with defining the new input data related to August 2010 to January 2011 groundwater level was predicted for the following year. The achieved results of ANN model in contrast with results of finite difference model showed very high accuracy of artificial neural network in predicting groundwater level.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 50 条
  • [31] Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation
    Tsanis, Ioannis K.
    Coulibaly, Paulin
    Daliakopoulos, Ioannis N.
    JOURNAL OF HYDROINFORMATICS, 2008, 10 (04) : 317 - 330
  • [32] Application of Artificial Neural Networks and Particle Swarm Optimization for the Management of Groundwater Resources
    Gaur, Shishir
    Ch, Sudheer
    Graillot, Didier
    Chahar, B. R.
    Kumar, D. Nagesh
    WATER RESOURCES MANAGEMENT, 2013, 27 (03) : 927 - 941
  • [33] An intercomparison of the groundwater level estimations by GRACE and GRACE-FO satellites and groundwater modeling in Iran
    Hadavi, Delara
    Mousavi, Seyed Morteza
    Rahimzadegan, Majid
    ACTA GEOPHYSICA, 2024, 72 (05) : 3609 - 3629
  • [34] Groundwater Level Modeling Using Multiobjective Optimization with Hybrid Artificial Intelligence Methods
    Fatemeh Barzegari Banadkooki
    Ali Torabi Haghighi
    Environmental Modeling & Assessment, 2024, 29 : 45 - 65
  • [35] Groundwater Level Modeling Using Multiobjective Optimization with Hybrid Artificial Intelligence Methods
    Banadkooki, Fatemeh Barzegari
    Haghighi, Ali Torabi
    ENVIRONMENTAL MODELING & ASSESSMENT, 2024, 29 (01) : 45 - 65
  • [36] Feasibility of using artificial neural networks to forecast groundwater levels in real time
    Yao-Ming Hong
    Landslides, 2017, 14 : 1815 - 1826
  • [37] Groundwater Level Forecasting based on Support Vector Machine
    Zhao, Weiguo
    Wang, Huan
    Wang, Zijun
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 1365 - 1369
  • [38] Groundwater level forecasting using soft computing techniques
    Natarajan, N.
    Sudheer, Ch
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) : 7691 - 7708
  • [39] Groundwater level forecasting with machine learning models: A review
    Boo, Kenneth Beng Wee
    El-Shafie, Ahmed
    Othman, Faridah
    Khan, Md. Munir Hayet
    Birima, Ahmed H.
    Ahmed, Ali Najah
    WATER RESEARCH, 2024, 252
  • [40] Groundwater level forecasting using soft computing techniques
    N. Natarajan
    Ch. Sudheer
    Neural Computing and Applications, 2020, 32 : 7691 - 7708