A NOTE ON BI-LINEAR MULTIPLIERS

被引:1
作者
Shrivastava, Saurabh [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal 462066, India
关键词
Fourier multipliers; Littlewood-Paley operators; bi-linear multipliers; transference methods; LITTLEWOOD-PALEY;
D O I
10.1090/S0002-9939-2015-12679-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that if chi(E) (xi - eta) -the indicator function of a measurable set E subset of R-d is a bi-linear multiplier symbol for exponents p, q, r satisfying the H " older's condition 1/p + 1/q = 1/r and exactly one of p, q, or r' = r/r-1 is less than 2, then E is equivalent to an open subset of R-d.
引用
收藏
页码:3055 / 3061
页数:7
相关论文
共 8 条
[1]  
Blasco O., 2005, INT J MATH MATH SCI, V2005, P545, DOI DOI 10.1155/IJMMS.2005.545
[2]   ON LP MULTIPLIERS [J].
DELEEUW, K .
ANNALS OF MATHEMATICS, 1965, 81 (02) :364-&
[3]   Multilinear Calderon-Zygmund theory [J].
Grafakos, L ;
Torres, RH .
ADVANCES IN MATHEMATICS, 2002, 165 (01) :124-164
[4]   Lp estimates on the bilinear Hilbert transform for 2<p<∞ [J].
Lacey, M ;
Thiele, C .
ANNALS OF MATHEMATICS, 1997, 146 (03) :693-724
[5]   On Calderon's conjecture [J].
Lacey, M ;
Thiele, C .
ANNALS OF MATHEMATICS, 1999, 149 (02) :475-496
[6]   IDEMPOTENTS OF FOURIER MULTIPLIER ALGEBRA [J].
LEBEDEV, V ;
OLEVSKII, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (05) :539-544
[7]   BILINEAR LITTLEWOOD-PALEY FOR CIRCLE AND TRANSFERENCE [J].
Mohanty, Parasar ;
Shrivastava, Saurabh .
PUBLICACIONS MATEMATIQUES, 2011, 55 (02) :501-519
[8]   A NOTE ON THE BILINEAR LITTLEWOOD-PALEY SQUARE FUNCTION [J].
Mohanty, Parasar ;
Shrivastava, Saurabh .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) :2095-2098