This paper describes the solution to transient incompressible two-dimensional Navier-Stokes equations in primitive variables by the dual reciprocity boundary element method. The coupled set of mass and momentum equations is structured by the fundamental solution of the Laplace equation. The dual reciprocity method is based on the augmented thin plate splines. All derivatives involved are calculated through integral representation formulas. Numerical example include convergence studies with different mesh size for the classical lid-driven cavity problem at Re = 100 and comparison with the results obtained through calculation of the derivatives from global interpolation formulas. The accuracy of the solution is assessed by comparison with the Ghia-Ghia-Shin finite difference solution as a reference. (C) 1999 Elsevier Science Ltd. All lights reserved.
机构:
Barcelona Supercomp Ctr BSC CNS, Barcelona 08034, SpainBarcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain
Houzeaux, G.
Eguzkitza, B.
论文数: 0引用数: 0
h-index: 0
机构:
Barcelona Supercomp Ctr BSC CNS, Barcelona 08034, SpainBarcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain
Eguzkitza, B.
Aubry, R.
论文数: 0引用数: 0
h-index: 0
机构:
George Mason Univ, Ctr Computat Fluid Dynam, Fairfax, VA 22030 USABarcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain
Aubry, R.
Owen, H.
论文数: 0引用数: 0
h-index: 0
机构:
Barcelona Supercomp Ctr BSC CNS, Barcelona 08034, SpainBarcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain
Owen, H.
Vazquez, M.
论文数: 0引用数: 0
h-index: 0
机构:
Barcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain
Spanish Council Sci Res CSIC, Artificial Intelligence Res Inst IIIA, Bellaterra, SpainBarcelona Supercomp Ctr BSC CNS, Barcelona 08034, Spain