Tunable Bandgap in Silicene and Germanene

被引:1282
|
作者
Ni, Zeyuan [1 ]
Liu, Qihang [1 ]
Tang, Kechao [1 ]
Zheng, Jiaxin [1 ]
Zhou, Jing [1 ]
Qin, Rui [1 ]
Gao, Zhengxiang [1 ]
Yu, Dapeng [1 ]
Lu, Jing [1 ]
机构
[1] Peking Univ, Dept Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
关键词
Silicene; germanene; band gap; quantum transport; electric field; first-principles calculation; GRAPHENE; TRANSISTORS; GAP;
D O I
10.1021/nl203065e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By using ab initio calculations, we predict that a vertical electric field is able to open a band gap in semimetallic single-layer buckled silicene and germanene. The sizes of the band gap in both silicene and germanene increase linearly with the electric field strength. Ab initio quantum transport simulation of a dual-gated silicene field effect transistor confirms that the vertical electric field opens a transport gap, and a significant switching effect by an applied gate voltage is also observed. Therefore, biased single-layer silicene and germanene can work effectively at room temperature as field effect transistors.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 50 条
  • [21] Band gap determination of graphene, h-boron nitride, phosphorene, silicene, stanene, and germanene nanoribbons
    Pandya, Ankur
    Sangani, Keyur
    Jha, Prafulla K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (41)
  • [22] Thermal transport in composition graded silicene/germanene heterostructures
    Cao, Zengqiang
    Wang, Chaoyu
    Zhang, Honggang
    You, Bo
    Ni, Yuxiang
    CHINESE PHYSICS B, 2024, 33 (04)
  • [23] Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation
    Mortazavi, Bohayra
    Dianat, Arezoo
    Cuniberti, Gianaurelio
    Rabczuk, Timon
    ELECTROCHIMICA ACTA, 2016, 213 : 865 - 870
  • [24] Resonance Raman Spectroscopy of Silicene and Germanene
    Kukucska, Gergo
    Zolyomi, Viktor
    Koltai, Janos
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (03) : 1995 - 2008
  • [25] Fundamentals and functionalities of silicene, germanene, and stanene
    Ezawa, M.
    Salomon, E.
    De Padova, P.
    Solonenko, D.
    Vogt, P.
    Davila, M. E.
    Molle, A.
    Angot, T.
    Le Lay, G.
    RIVISTA DEL NUOVO CIMENTO, 2018, 41 (03): : 175 - 224
  • [26] Analysis of Molecular Single-Electron Transistors Using Silicene, Graphene and Germanene
    Abhinav, E. Meher
    Kavuri, Sai Naveen
    Kumar, Thota Sandeep
    Thirupathi, Maragani
    Mohan, M. Chandra
    Reddy, A. Suresh
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 77 - 84
  • [27] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Li, Xiaodan
    Wu, Shunqing
    Zhou, Sen
    Zhu, Zizhong
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 9
  • [28] Bandgap opening in silicene: Effect of substrates
    Gao, N.
    Li, J. C.
    Jiang, Q.
    CHEMICAL PHYSICS LETTERS, 2014, 592 : 222 - 226
  • [29] Resolving the Controversial Existence of Silicene and Germanene Nanosheets Grown on Graphite
    Peng, Wenbing
    Xu, Tao
    Diener, Pascale
    Biadala, Louis
    Berthe, Maxime
    Pi, Xiaodong
    Borensztein, Yves
    Curcella, Alberto
    Bernard, Romain
    Prevot, Geoffroy
    Grandidier, Bruno
    ACS NANO, 2018, 12 (05) : 4754 - 4760
  • [30] Monolayer Topological Insulators: Silicene, Germanene, and Stanene
    Ezawa, Motohiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (12)