Deep learning in digital pathology image analysis: a survey

被引:103
作者
Deng, Shujian [1 ,2 ,3 ,4 ]
Zhang, Xin [1 ,2 ,3 ,4 ]
Yan, Wen [1 ,2 ,3 ,4 ]
Chang, Eric I-Chao [5 ]
Fan, Yubo [1 ,2 ,3 ,4 ]
Lai, Maode [6 ]
Xu, Yan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Biomech & Mechanobiol, Minist Educ, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[5] Microsoft Res Asia, Beijing 100080, Peoples R China
[6] Zhejiang Univ, Sch Med, Dept Pathol, Hangzhou 310007, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
pathology; deep learning; segmentation; detection; classification; MITOSIS DETECTION; BREAST-CANCER; PROSTATE-CANCER; MALIGNANT MESOTHELIOMA; COLOR NORMALIZATION; STAIN NORMALIZATION; NUCLEI SEGMENTATION; PROGNOSTIC VALUE; LUNG-CANCER; HISTOPATHOLOGY;
D O I
10.1007/s11684-020-0782-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.
引用
收藏
页码:470 / 487
页数:18
相关论文
共 172 条
[61]   TOWARDS GRADING GLEASON SCORE USING GENERICALLY TRAINED DEEP CONVOLUTIONAL NEURAL NETWORKS [J].
Kallen, Hanna ;
Molin, Jesper ;
Heyden, Anders ;
Lundstrom, Claes ;
Astrom, Kalle .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :1163-1167
[62]  
Karvelis Petros S, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P3009
[63]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[64]  
Keenan SJ, 2000, J PATHOL, V192, P351, DOI 10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO
[65]  
2-I
[66]   A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution [J].
Khan, Adnan Mujahid ;
Rajpoot, Nasir ;
Treanor, Darren ;
Magee, Derek .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (06) :1729-1738
[67]  
Khan AM, 2013, J PATHOL INFORM, V4, P149
[68]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[69]   Morphometric grading of invasive ductal breast cancer. I. Thresholds for nuclear grade [J].
Kronqvist, P ;
Kuopio, T ;
Collan, Y .
BRITISH JOURNAL OF CANCER, 1998, 78 (06) :800-805
[70]  
Krupinski EA, 2016, TELEPATHOLOGY DIGITA, P41