Deep learning in digital pathology image analysis: a survey

被引:103
作者
Deng, Shujian [1 ,2 ,3 ,4 ]
Zhang, Xin [1 ,2 ,3 ,4 ]
Yan, Wen [1 ,2 ,3 ,4 ]
Chang, Eric I-Chao [5 ]
Fan, Yubo [1 ,2 ,3 ,4 ]
Lai, Maode [6 ]
Xu, Yan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Biomech & Mechanobiol, Minist Educ, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[5] Microsoft Res Asia, Beijing 100080, Peoples R China
[6] Zhejiang Univ, Sch Med, Dept Pathol, Hangzhou 310007, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
pathology; deep learning; segmentation; detection; classification; MITOSIS DETECTION; BREAST-CANCER; PROSTATE-CANCER; MALIGNANT MESOTHELIOMA; COLOR NORMALIZATION; STAIN NORMALIZATION; NUCLEI SEGMENTATION; PROGNOSTIC VALUE; LUNG-CANCER; HISTOPATHOLOGY;
D O I
10.1007/s11684-020-0782-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.
引用
收藏
页码:470 / 487
页数:18
相关论文
共 172 条
[51]   Metastatic patterns in adenocarcinoma [J].
Hess, KR ;
Varadhachary, GR ;
Taylor, SH ;
Wei, W ;
Raber, MN ;
Lenzi, R ;
Abbruzzese, JL .
CANCER, 2006, 106 (07) :1624-1633
[52]  
Ho DJ, 2018, I S BIOMED IMAGING, P418, DOI 10.1109/ISBI.2018.8363606
[53]   Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification [J].
Hou, Le ;
Samaras, Dimitris ;
Kurc, Tahsin M. ;
Gao, Yi ;
Davis, James E. ;
Saltz, Joel H. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2424-2433
[54]  
Ing N, 2018, MED IMAGING
[55]   Gleason grading of prostate tumours with max-margin conditional random fields [J].
Jacobs, Joseph G. ;
Panagiotaki, Eleftheria ;
Alexander, Daniel C. .
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8679 :85-92
[56]   Stain Normalization using Sparse AutoEncoders (StalloSA): Application to digital pathology [J].
Janowczyk, Andrew ;
Basavanhally, Ajay ;
Madabhushi, Anant .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 57 :50-61
[57]   Constrained Deep Weak Supervision for Histopathology Image Segmentation [J].
Jia, Zhipeng ;
Huang, Xingyi ;
Chang, Eric I-Chao ;
Xu, Yan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) :2376-2388
[58]  
Jiao L., 2013, IFMBE P, P1283, DOI [DOI 10.1007/978-3-642-29305-4_336, 10.1007/978-3-642-29305-4_336]
[59]  
Johnson J.W., ARXIV180500500
[60]   Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization [J].
Kainz, Philipp ;
Pfeiffer, Michael ;
Urschler, Martin .
PEERJ, 2017, 5