Deep learning in digital pathology image analysis: a survey

被引:90
|
作者
Deng, Shujian [1 ,2 ,3 ,4 ]
Zhang, Xin [1 ,2 ,3 ,4 ]
Yan, Wen [1 ,2 ,3 ,4 ]
Chang, Eric I-Chao [5 ]
Fan, Yubo [1 ,2 ,3 ,4 ]
Lai, Maode [6 ]
Xu, Yan [1 ,2 ,3 ,4 ,5 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Biomech & Mechanobiol, Minist Educ, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[5] Microsoft Res Asia, Beijing 100080, Peoples R China
[6] Zhejiang Univ, Sch Med, Dept Pathol, Hangzhou 310007, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
pathology; deep learning; segmentation; detection; classification; MITOSIS DETECTION; BREAST-CANCER; PROSTATE-CANCER; MALIGNANT MESOTHELIOMA; COLOR NORMALIZATION; STAIN NORMALIZATION; NUCLEI SEGMENTATION; PROGNOSTIC VALUE; LUNG-CANCER; HISTOPATHOLOGY;
D O I
10.1007/s11684-020-0782-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.
引用
收藏
页码:470 / 487
页数:18
相关论文
共 50 条
  • [1] Deep learning in digital pathology image analysis: a survey
    Shujian Deng
    Xin Zhang
    Wen Yan
    Eric I-Chao Chang
    Yubo Fan
    Maode Lai
    Yan Xu
    Frontiers of Medicine, 2020, 14 : 470 - 487
  • [2] Image Analysis in Digital Pathology Utilizing Machine Learning and Deep Neural Networks
    Amerikanos, Paris
    Maglogiannis, Ilias
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [3] Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
    Chen, Yijiang
    Janowczyk, Andrew
    Madabhushi, Anant
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 221 - 233
  • [4] Overview and Prospect of Deep Learning for Image Segmentation in Digital Pathology
    Song J.
    Xiao L.
    Lian Z.-C.
    Cai Z.-Y.
    Jiang G.-P.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (05): : 1427 - 1460
  • [5] Survey on deep learning applications in digital image security
    Bao, Zhenjie
    Xue, Ru
    OPTICAL ENGINEERING, 2021, 60 (12)
  • [6] Digital image watermarking using deep learning: A survey
    Hosny, Khalid M.
    Magdi, Amal
    ElKomy, Osama
    Hamza, Hanaa M.
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [7] A survey on deep learning in medical image analysis
    Litjens, Geert
    Kooi, Thijs
    Bejnordi, Babak Ehteshami
    Setio, Arnaud Arindra Adiyoso
    Ciompi, Francesco
    Ghafoorian, Mohsen
    van der Laak, Jeroen A. W. M.
    van Ginneken, Bram
    Sanchez, Clara I.
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 60 - 88
  • [8] Deep Learning in Microscopy Image Analysis: A Survey
    Xing, Fuyong
    Xie, Yuanpu
    Su, Hai
    Liu, Fujun
    Yang, Lin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (10) : 4550 - 4568
  • [9] Image analysis and machine learning in digital pathology: Challenges and opportunities
    Madabhushi, Anant
    Lee, George
    MEDICAL IMAGE ANALYSIS, 2016, 33 : 170 - 175
  • [10] Deep learning applications in digital pathology
    Boor, Peter
    NATURE REVIEWS NEPHROLOGY, 2024, 20 (11) : 702 - 703