ROBUST FUNCTIONAL PRINCIPAL COMPONENTS: A PROJECTION-PURSUIT APPROACH

被引:64
|
作者
Lucas Bali, Juan [1 ]
Boente, Graciela [1 ]
Tyler, David E. [3 ]
Wang, Jane-Ling [2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Rutgers State Univ, Dept Stat, Hill Ctr, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Fisher-consistency; functional data; method of sieves; penalization; principal component analysis; outliers; robust estimation; DISTRIBUTIONS; ESTIMATORS; MATRICES; SCALE;
D O I
10.1214/11-AOS923
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many situations, data are recorded over a period of time and may be regarded as realizations of a stochastic process. In this paper, robust estimators for the principal components are considered by adapting the projection pursuit approach to the functional data setting. Our approach combines robust projection-pursuit with different smoothing methods. Consistency of the estimators are shown under mild assumptions. The performance of the classical and robust procedures are compared in a simulation study under different contamination schemes.
引用
收藏
页码:2852 / 2882
页数:31
相关论文
共 50 条
  • [41] A plug-in approach to sparse and robust principal component analysis
    Greco, Luca
    Farcomeni, Alessio
    TEST, 2016, 25 (03) : 449 - 481
  • [42] Dynamic Functional Principal Components for Testing Causality
    Saumard, Matthieu
    Hadjadji, Bilal
    SIGNALS, 2021, 2 (02): : 353 - 365
  • [43] Common functional principal components analysis: A new approach to analyzing human movement data
    Coffey, N.
    Harrison, A. J.
    Donoghue, O. A.
    Hayes, K.
    HUMAN MOVEMENT SCIENCE, 2011, 30 (06) : 1144 - 1166
  • [44] Robust Bayesian functional principal component analysis
    Zhang, Jiarui
    Cao, Jiguo
    Wang, Liangliang
    STATISTICS AND COMPUTING, 2025, 35 (02)
  • [45] Bayesian Estimation of Principal Components for Functional Data
    Suarez, Adam J.
    Ghosal, Subhashis
    BAYESIAN ANALYSIS, 2017, 12 (02): : 311 - 333
  • [46] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [47] Principal components analysis for sparsely observed correlated functional data using a kernel smoothing approach
    Paul, Debashis
    Peng, Jie
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 1960 - 2003
  • [48] Reformulation of Bayesian Geostatistical Approach on Principal Components
    Zhao, Yue
    Luo, Jian
    WATER RESOURCES RESEARCH, 2020, 56 (04)
  • [49] Stability approach to selecting the number of principal components
    Song, Jiyeon
    Shin, Seung Jun
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1923 - 1938
  • [50] A penalized likelihood approach to rotation of principal components
    Park, T
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (04) : 867 - 888